Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the physical foundations of targeted radioisotope therapy with alpha particles, difficulties of imaging after an administration of alpha emitters, as well as current research trends and possibilities of their post-therapeutic imaging.
Słowa kluczowe
Rocznik
Tom
Strony
258--262
Opis fizyczny
Bibliogr. 40 poz., tab.
Twórcy
autor
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
autor
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
Bibliografia
- 1. Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev. 2023;123(20):12004-12035. https://doi.org/10.1021/acs.chemrev.3c00456
- 2. Leidermark E, Hallqvist A, Jacobsson L, et al. Estimating the Risk for Secondary Cancer After Targeted α-Therapy with211At Intraperitoneal Radioimmunotherapy. J Nucl Med. 2022;64(1):165-172. https://doi.org/10.2967/jnumed.121.263349
- 3. Reinecke MJ, Ahlers G, Burchert A, et al. Second primary malignancies induced by radioactive iodine treatment of differentiated thyroid carcinoma — a critical review and evaluation of the existing evidence. Eur J Nucl Med Mol Imaging. 2022;49(9):3247-3256. https://doi.org/10.1007/s00259-022-05762-4
- 4. Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, Mikołajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38(10):1788-1797. https://doi.org/10.1007/s00259-011-1833-x
- 5. Baum RP, Kulkarni HR, Singh A, et al. Results and adverse events of personalized peptide receptor radionuclide therapy with 90Yttrium and 177Lutetium in 1048 patients with neuroendocrine neoplasms. Oncotarget. 2018;9(24):16932-16950. https://doi.org/10.18632/oncotarget.24524
- 6. Hänscheid H, Lassmann M, Verburg FA. Determinants of target absorbed dose in radionuclide therapy. Zeitschrift für Medizinische Physik. 2023;33(1):82-90. https://doi.org/10.1016/j.zemedi.2022.10.001
- 7. Pouget JP, Constanzo J. Revisiting the Radiobiology of Targeted Alpha Therapy. Front Med. 2021;8. https://doi.org/10.3389/fmed.2021.692436
- 8. Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies—Part 1. J Nucl Med. 2018;59(6):878-884. https://doi.org/10.2967/jnumed.116.186338
- 9. Sgouros G, Roeske JC, McDevitt MR, et al. MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of α-Particle Emitters for Targeted Radionuclide Therapy. J Nucl Med. 2010;51(2):311-328. https://doi.org/10.2967/jnumed.108.058651
- 10. Koh T, Bezak E, Chan D, Cehic G. Targeted alpha-particle therapy in neuroendocrine neoplasms: A systematic review. World J Nucl Med. 2021;20(04):329-335. https://doi.org/10.4103/wjnm.wjnm_160_20
- 11. Shi M, Jakobsson V, Greifenstein L, et al. Alpha-peptide receptor radionuclide therapy using actinium-225 labeled somatostatin receptor agonists and antagonists. Front Med. 2022;9. https://doi.org/10.3389/fmed.2022.1034315
- 12. Parker C, Nilsson S, Heinrich D, et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N Engl J Med. 2013;369(3):213-223. https://doi.org/10.1056/nejmoa1213755
- 13. Zhang J, Qin S, Yang M, Zhang X, Zhang S, Yu F. Alpha‐emitters and targeted alpha therapy in cancer treatment. iRADIOLOGY. 2023;1(3):245-261. https://doi.org/10.1002/ird3.30
- 14. Jabbar T, Bashir S, Babar MI. Review of current status of targeted alpha therapy in cancer treatment. Nucl Med Rev. 2023;26(0):54-67. https://doi.org/10.5603/nmr.2023.0003
- 15. Kunikowska J, Morgenstern A, Pełka K, Bruchertseifer F, Królicki L. Targeted alpha therapy for glioblastoma. Front Med. 2022;9. https://doi.org/10.3389/fmed.2022.1085245
- 16. Seo Y. Quantitative Imaging of Alpha-Emitting Therapeutic Radiopharmaceuticals. Nucl Med Mol Imaging. 2019;53(3):182-188. https://doi.org/10.1007/s13139-019-00589-8
- 17. Lassmann M, Eberlein U. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Ann ICRP. 2018;47(3-4):187-195. https://doi.org/10.1177/0146645318756253
- 18. Hindorf C, Chittenden S, Aksnes AK, Parker C, Flux GD. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nuclear Medicine Communications. 2012;33(7):726-732. https://doi.org/10.1097/mnm.0b013e328353bb6e
- 19. Carrasquillo JA, O’Donoghue JA, Pandit-Taskar N, et al. Phase I pharmacokinetic and biodistribution study with escalating doses of 223Ra-dichloride in men with castration-resistant metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40(9):1384-1393. https://doi.org/10.1007/s00259-013-2427-6
- 20. Chittenden SJ, Hindorf C, Parker CC, et al. A Phase 1, Open-Label Study of the Biodistribution, Pharmacokinetics, and Dosimetry of 223Ra-Dichloride in Patients with Hormone-Refractory Prostate Cancer and Skeletal Metastases. J Nucl Med. 2015;56(9):1304-1309. https://doi.org/10.2967/jnumed.115.157123
- 21. Yoshida K, Kaneta T, Takano S, et al. Pharmacokinetics of single dose radium-223 dichloride (BAY 88-8223) in Japanese patients with castration-resistant prostate cancer and bone metastases. Ann Nucl Med. 2016;30(7):453-460. https://doi.org/10.1007/s12149-016-1093-8
- 22. Pacilio M, Ventroni G, De Vincentis G, et al. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting 223Ra-dichloride. Eur J Nucl Med Mol Imaging. 2015;43(1):21-33. https://doi.org/10.1007/s00259-015-3150-2
- 23. Murray I, Rojas B, Gear J, Callister R, Cleton A, Flux GD. Quantitative Dual-Isotope Planar Imaging of Thorium-227 and Radium-223 Using Defined Energy Windows. Cancer Biotherapy and Radiopharmaceuticals. 2020;35(7):530-539. https://doi.org/10.1089/cbr.2019.3554
- 24. Sgouros G, Ballangrud AM, Jurcic JG, et al. Pharmacokinetics and Dosimetry of an α-Particle Emitter Labeled Antibody: 213Bi-HuM195 (Anti-CD33) in Patients with Leukemia. J Nucl Med. 1999;40:1935-1949.
- 25. Cordier D, Forrer F, Bruchertseifer F, et al. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: a pilot trial. Eur J Nucl Med Mol Imaging. 2010;37(7):1335-1344. https://doi.org/10.1007/s00259-010-1385-5
- 26. Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J Nucl Med. 2016;57(12):1941-1944. https://doi.org/10.2967/jnumed.116.178673
- 27. Kamaleshwaran K, Suneelkumar M, Madhusairam R, Radhakrishnan E, Arunpandiyan S, Arnold V. Whole-body and single-photon emission computed tomography/computed tomography postpeptide receptor alpha radionuclide therapy images of actinium 225-tetraazacyclododecanetetraacetic Acid–Octreotide as a primary modality of treatment in a patient with advanced rectal neuroendocrine tumor with metastases. Indian J Nucl Med. 2020;35(3):226. https://doi.org/10.4103/ijnm.ijnm_58_20
- 28. Ocak M, Toklu T, Demirci E, Selçuk N, Kabasakal L. Post-therapy imaging of 225Ac-DOTATATE treatment in a patient with recurrent neuroendocrine tumor. Eur J Nucl Med Mol Imaging. 2020;47(11):2711-2712. https://doi.org/10.1007/s00259-020-04725-x
- 29. Gosewisch A, Schleske M, Gildehaus FJ, et al. Image-based dosimetry for 225Ac-PSMA-I&T therapy using quantitative SPECT. Eur J Nucl Med Mol Imaging. 2020;48(4):1260-1261. https://doi.org/10.1007/s00259-020-05024-1
- 30. Delker A, Schleske M, Liubchenko G, et al. Biodistribution and dosimetry for combined [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T therapy using multi-isotope quantitative SPECT imaging. Eur J Nucl Med Mol Imaging. 2023;50(5):1280-1290. https://doi.org/10.1007/s00259-022-06092-1
- 31. Benabdallah N, Scheve W, Dunn N, et al. Practical considerations for quantitative clinical SPECT/CT imaging of alpha particle emitting radioisotopes. Theranostics. 2021;11(20):9721-9737. https://doi.org/10.7150/thno.63860
- 32. Liubchenko G, Böning G, Zacherl M, et al. Image-based dosimetry for [225Ac]Ac-PSMA-I&T therapy and the effect of daughter-specific pharmacokinetics. Eur J Nucl Med Mol Imaging. 2024;51(8):2504-2514. https://doi.org/10.1007/s00259-024-06681-2
- 33. Tulik M, Kuliński R, Tabor Z, et al. Quantitative SPECT/CT imaging of actinium-225 for targeted alpha therapy of glioblastomas. EJNMMI Phys. 2024;11(1). https://doi.org/10.1186/s40658-024-00635-1
- 34. Takahashi A, Kajiya R, Baba S, Sasaki M. Monte Carlo simulation study to explore optimum conditions for Astatine-211 SPECT. Radiol Phys Technol. 2023;16(1):102-108. https://doi.org/10.1007/s12194-023-00702-9
- 35. Turkington TG, Zalutsky MR, Jaszczak RJ, Garg PK, Vaidyanathan G, Coleman RE. Phys Med Biol. 1993;38(8):1121-1130. https://doi.org/10.1088/0031-9155/38/8/010
- 36. Müller C, Vermeulen C, Köster U, et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI radiopharm chem. 2016;1(1). https://doi.org/10.1186/s41181-016-0008-2
- 37. Mikalsen LTG, Kvassheim M, Stokke C. Optimized SPECT Imaging of224Ra α-Particle Therapy by212Pb Photon Emissions. J Nucl Med. 2023;64(7):1131-1137. https://doi.org/10.2967/jnumed.122.264455
- 38. Kvassheim M, Tornes AJK, Juzeniene A, Stokke C, Revheim MER. Imaging of 212Pb in mice with a clinical SPECT/CT. EJNMMI Phys. 2023;10(1). https://doi.org/10.1186/s40658-023-00571-6
- 39. Kvassheim M, Revheim MER, Stokke C. Quantitative SPECT/CT imaging of lead-212: a phantom study. EJNMMI Phys. 2022;9(1). https://doi.org/10.1186/s40658-022-00481-z
- 40. Meredith RF, Torgue J, Azure MT, et al. Pharmacokinetics and Imaging of212Pb-TCMC-Trastuzumab After Intraperitoneal Administration in Ovarian Cancer Patients. Cancer Biotherapy and Radiopharmaceuticals. 2014;29(1):12-17. https://doi.org/10.1089/cbr.2013.1531
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25fc1c93-bb2a-4b76-bbc6-f7abc5b0c781
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.