PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minimizing movements for dissipative systems that are not gradient flows

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The time discretization method, which is a method of constructing time global solutions for gradient flows, is applied to dissipative systems in Hilbert spaces, which are not necessarily gradient flows. Equations with perturbation terms added to gradient flows are considered, and when the perturbation term is smaller than the principal term in an analytical sense, the dissipative structure of the energy is maintained, and the existence of time global solutions is shown by the time discretization method.
Rocznik
Strony
133--149
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Department of Mathematics, College of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan
Bibliografia
  • [1] M. M.-P. Agueh, Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory, Georgia Institute of Technology, 2002.
  • [2] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: in Metric Spaces and in the Space of Probability Measures, Springer, 2005.
  • [3] J.-F. Babadjian and V. Millot, Unilateral gradient flow of the ambrosio-tortorelli functional by minimizing movements, Ann. Inst. H. Poincaré C Anal. Non Linéaire 31 (2014), 779-822.
  • [4] A. Blanchet, V. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal. 46 (2008), 691-721.
  • [5] A. Blanchet, J. A. Carrillo, D. Kinderlehrer, M. Kowalczyk, P. Laurençot and S. Lisini, A hybrid variational principle for the Keller-Segel system in R2, ESAIM Math. Modelling Numer. Anal. 49 (2015), 1553-1576.
  • [6] A. Blanchet and P. Laurençot, The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in Rd, d ≥ 3, Comm. Partial Differential Equations 38 (2013), 658-686.
  • [7] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), 1-17.
  • [8] S. Lisini, E. Mainini and A. Segatti, A gradient flow approach to the porous medium equation with fractional pressure, Arch. Ration. Mech. Anal. 227 (2018), 567-606.
  • [9] A. Marino, C. Saccon and M. Tosques, Curves of maximal slope and parabolic variational inequalities on non-convex constraints, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989), 281-330.
  • [10] D. Matthes, R. J. McCann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type, Comm. Partial Differential Equations 34 (2009), 1352-1397.
  • [11] D. Matthes and S. Plazotta, A variational formulation of the bdf2 method for metric gradient flows, ESAIM Math. Modelling Numer. Anal. 53 (2019), 145-172.
  • [12] Y. Mimura, Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions, Discrete Contin. Dynam. Systems 37 (2017), 1603-1630.
  • [13] Y. Mimura, The variational formulation of the fully parabolic Keller-Segel system with degenerate diffusion, J. Differential Equations 263 (2017), 1477-1521.
  • [14] M. Negri, A unilateral L2-gradient flow and its quasi-static limit in phase-field fracture by an alternate minimizing movement, Adv. Calc. Var. 12 (2019), 1-29.
  • [15] R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications, ESAIM Control Optim. Calc. Var. 12 (2006), 564-614.
  • [16] E. Yanagida, Standing pulse solutions in reaction-diffusion systems with skew-gradient structure, J. Dynam. Differential Equations 14 (2002), 189-205.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25f9ee63-b550-47d8-bf1c-e7778c312ab5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.