PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Practical Mittag-Leffler stability of quasi-one-sided Lipschitz fractional order systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the global practical Mittag-Leffler feedback stabilization problem for a class of uncertain fractional-order systems. This class of systems is a larger class of nonlinearities than the Lipschitz ones. Based on the quasi-one-sided Lipschitz condition, firstly, we provide sufficient conditions for the practical observer design. Then, we exhibit that practical Mittag-Leffler stability of the closed loop system with a linear, state feedback is attained. Finally, a separation principle is established and we prove that the closed loop system is practical Mittag-Leffler stable.
Rocznik
Strony
55--70
Opis fizyczny
Bibliogr. 29 poz., rys., wzory
Twórcy
  • Gafsa University, Faculty of Sciences of Gafsa, Department of Mathematics, Zarroug Gafsa 2112 Tunisia
autor
  • Sfax University, Faculty of Sciences of Sfax, Department of Mathematics, BP 1171 Sfax 3000 Tunisia
autor
  • Laboratoire de Mathématiques et de Modélisation d’Evry, Univ d’Evry, Université Paris Saclay, France
Bibliografia
  • [1] M. Abbaszadeh and H.J. Marquez: Robust 𝐻1 observer design for sampled-data Lipschitz nonlinear systems with exact and Euler approximate models. Automatica, 44(3), (2008), 799-806. DOI: 10.1016/j.automatica.2007.07.021.
  • [2] M. Abbaszadeh rm and H.J. Marquez: Nonlinear observer design for one-sided Lipschitz systems. In American Control Conference, Baltimore, USA, (2010), 5284-5289. DOI: 10.1109/ACC.2010.5530715.
  • [3] R.L. Bagley and R.A. Calico: Fractional order state equations for the control of viscoelastically damped structures. Journal of Guidance, Control, and Dynamics, 14(2), (1991), 304-311. DOI: 10.2514/3.20641.
  • [4] A. Barbata, M. Zasadzinski, H.S. Ali, and H. Messaoud: Exponential observer for a class of one-sided Lipschitz stochastic nonlinear systems. IEEE Transactions on Automatic Control, 60(1), (2015), 259-264. DOI: 10.1109/TAC.2014.2325391.
  • [5] S.K. Choi, K.B. Kang, and N. Koo: Stability for Caputo fractional differential systems. Abstract and Applied Analysis, 2014 (2014), 1-6. DOI: 10.1155/2014/631419.
  • [6] J.P. Clerc, A.M.S. Tremblay, G. Albinet, and C. Mitescu: AC response of fractal networks. Journal de Physique Letters, 45(19), (1984), 913-924. DOI: 10.1051/jphyslet:019840045019091300.
  • [7] K. Diethelm: The Analysis of Fractional Differential Equations, an Application Oriented, Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics no. 2004, Springer, Heidelbereg, 2010.
  • [8] M.A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos, and R. Castro-Linares: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22(1-3), (2015), 650-659. DOI: 10.1016/j.cnsns.2014.10.008.
  • [9] T. Fajraoui, B. Ghanmi, F. Mabrouk, and F. Omri: Mittag-Leffler stability analysis of a class of homogeneous fractional systems. Archives of Control Sciences, 31(2), (2021), 401-415. DOI: 10.24425/acs.2021.137424.
  • [10] F. Fu, M. Hou, and G. Duan: Stabilization of quasi-one-sided Lipschitz nonlinear systems. IMA Journal of Mathematical Control and Information, 30, (2013), 169-184. DOI: 10.1093/imamci/dns023.
  • [11] X. Gao and J.B. Yu: Synchronization of two coupled fractional-order chaotic oscillators. Chaos, Solitons & Fractals, 26(1), (2005), 141-145. DOI: 10.1016/j.chaos.2004.12.030.
  • [12] L. Gaul, P. Klein, and S. Kemple: Damping description involving fractional operators. Mechanical Systems and Signal Processing, 5(2), (1991), 81-88. DOI: 10.1016/0888-3270(91)90016-X.
  • [13] Guang-Da Hu: A note on observer for one-sided Lipschitz non-linear systems. IMA Journal of Mathematical Control and Information, 25(3), (2008), 297-303. DOI: 10.1093/imamci/dnm024.
  • [14] Guang-Da Hu: Observers for one-sided Lipschitz nonlinear systems. IMA Journal of Mathematical Control and Information, 23(4), (2006), 395-401. DOI: 10.1093/imamci/dni068.
  • [15] M. Ichise, Y. Nagayanagi and T. Kojima: An analog simulation of non-integer order transfer functions for analysis of electrode processes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 33(2), (1971), 253-265. DOI: 10.1016/S0022-0728(71)80115-8.
  • [16] A. Jmal, O. Naifar, A. Ben Makhlouf, N. Derbel, and M.A. Hammami: On observer design for nonlinear Caputo fractional-order systems. Asian Journal of Control, 20(5), (2018), 1-8. DOI: 10.1002/asjc.1645.
  • [17] M. Karkhane and M. Pourgholi: Adaptive observer design for one sided Lipschitz class of nonlinear systems. Modares Journal of Electrical Engineering, 11(4), (2015), 45-51.
  • [18] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204 Elsevier Science B.V., Amsterdam, 2006.
  • [19] N. Makris and M.C. Constantinou: Fractional-derivative Maxwell model for viscous dampers. Journal of Structural Engineering, 117(9), (1991), 2708-2724. DOI: 10.1061/(ASCE)0733-9445(1991)117:9(2708).
  • [20] T.E. McAdams, A. Lackermeier, J.A. McLaughlin, D. Macken, and J. Jossinet: The linear and non-linear electrical properties of the electrode-electrolyte interface. Biosensors and Bioelectronics, 10(1-2), (1995), 67-74. DOI: 10.1016/0956-5663(95)96795-Z.
  • [21] Muhafzan, A. Nazra, L. Yulianti, Zulakmal, and R. Revina: On LQ optimization problem subject to fractional order irregular singular systems. Archives of Control Sciences, 30(4), (2020), 745-756. DOI: 10.24425/acs.2020.135850.
  • [22] O. Naifar, A. Ben Makhlouf, and M.A. Hammami: On observer design for a class of nonlinear systems including unknown time-delay. Mediterranean Journal of Mathematics, 13(5), (2016), 2841-2851. DOI: 10.1007/S00009-015-0659-3.
  • [23] O. Naifar, A. Ben Makhlouf, M.A. Hammami, and L. Chen: Global practical Mittag Leffler stabilization by output feedback for a class of nonlinear fractional-order systems. Asian Journal of Control, 20(3), (2018), 1-9. DOI: 10.1002/asjc.1576.
  • [24] I. Podlubny: Fractional Differential Equations. Academic Press, San Diego, 1999.
  • [25] C. Yin, X. Huang, S. Dadras, Y-H Cheng, J. Cao, H. Malek, and J. Mei: Design of optimal lighting control strategy based on multi-variable fractional-order extremum seeking method. Information Sciences, 465 (2018), 38-60. DOI: 10.1016/j.ins.2018.06.059.
  • [26] C. Yin, Y.Q. Chen and M. Zhong: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica, bf 50(12), (2014), 3173-3181. DOI: 10.1016/j.automatica.2014.10.027.
  • [27] A. Zemouche and M. Boutayeb: Observer synthesis method for Lipschitz nonlinear discrete-time systems with time-delay: An LMI approach. Applied Mathematics and Computation, 218(2), (2011), 419-429. DOI: 10.1016/j.amc.2011.05.081.
  • [28] W. Zhang, H. Su, F. Zhu and G. Azar: Unknown input observer design for one-sided Lipschitz nonlinear systems. Nonlinear Dynamics, 79(2), (2015), 1469-79. DOI: 10.1007/s11071-014-1754-x.
  • [29] Y. Zhao, J. Tao and N.Z. Shi: A note on observer design for one-sided Lipschitz nonlinear systems. Systems & Control Letters, 59(1), (2010), 66-71. DOI: 10.1016/j.sysconle.2009.11.009.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25f9e498-2d5f-4646-a0bb-dd3a6d34637e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.