PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forced convection heat dissipation from pin fin heat sinks modified by rings and circular perforation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary factors to be managed in the design of heat sinks include enhancing the heat dissipation rate, minimizing occupied volume and mass, and eliminating lower heat transfer areas behind the pin fins. This study focuses on numerically analysing the impact of combining perforation technique and ring inserts on the heat dissipation and turbulent fluid flow characteristics of pin fin heat sinks. The rings are positioned around the cylindrical pin fins (CPFs). The perforation technique allows fluid flow to pass through the pin fins (PFs) and agitate the stagnant zones of flow behind PFs. These configurations are denoted as case 0 (no perforation) to case 4. Results show that fitted with rings and perforation (case 4), as an optimal configuration, demonstrates a 180.82% increase in Nusselt number and a 154.54% decrease in thermal resistance compared to CPFs. Fortunately, this configuration contributes to a significant decrease in the pressure drop by 62.19%. Furthermore, under the same conditions, the occupied volume and mass of case 4 are reduced by 77.5% and 77.65%, respectively. Additionally, the optimal configuration exhibits the highest hydrothermal performance factor (η) of 3.29 at Re = 8740.
Słowa kluczowe
Rocznik
Strony
117--125
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratoire des Carburants Gazeux et Environnement, Faculté de Génie Mécanique, USTO-Mohamed Boudiaf, Oran, Algeria
autor
  • Département du Tronc commun des Sciences et de Technologie, Faculté de Technologie, Université Amar Telidji de Laghouat, Algeria
  • Laboratoire des Science et Ingénierie Maritimes, Faculté de Génie Mécanique, USTO-Mohamed Boudiaf, Oran, Algeria
  • Laboratoire des Carburants Gazeux et Environnement, Faculté de Génie Mécanique, USTO-Mohamed Boudiaf, Oran, Algeria
Bibliografia
  • 1. Yuan J, Qu Y, Deng N, Du L, Hu W, Zhang X, et al. Three-dimensional numerical simulation of heat transfer enhancement of electronic de-vices by single crystal diamond rhombus-shaped pin fin microchannel heat sink. Diam Relat Mater. 2024;143(February):110887.
  • 2. Ahmed HE, Salman BH, Kherbeet AS, Ahmed MI. Optimization of ther-mal design of heat sinks: A review. Int J Heat Mass Transf. 2018;118:129–53.
  • 3. Kumar S, Kumar A, Darshan Kothiyal A, Singh Bisht M. A review of flow and heat transfer behaviour of nanofluids in micro channel heat sinks. Therm Sci Eng Prog. 2018;8(June):477–93.
  • 4. Chingulpitak S, Wongwises S. A review of the effect of flow directions and behaviors on the thermal performance of conventional heat sinks. Int J Heat Mass Transf. 2015;81:10–8.
  • 5. Wang Q, Tao J, Cui Z, Zhang T, Chen G. Passive enhanced heat transfer, hotspot management and temperature uniformity enhance-ment of electronic devices by micro heat sinks: A review. Int J Heat Fluid Flow. 2024;107(December 2023):109368.
  • 6. Castillo E, Santos A, Gonzalez A. Numerical study of the use of shear-thinning nanofluids in a microchannel heat sink with different pin den-sities and including vortex generator. Case Stud Therm Eng. 2024;57(March):104328.
  • 7. Ho CJ, Pan J, Yang TF, Rashidi S, Yan WM. Experimental study on thermal performance of water/nano-phase change emulsion through a mini- and micro-channel stacked double-layer heat sink. Int J Heat Mass Transf. 2023;217(September).
  • 8. Cheng J, Tang D, Li X, Tang Z. Multi-objective optimization of a com-bined heat sink with triangular protrusion and corrugated surface im-pinged by a nanofluid slit-confined jet. Int J Heat Mass Transf. 2024;218(September 2023):124769.
  • 9. Ho CJ, Peng JK, Yang TF, Rashidi S, Yan WM. Comparison of cooling performance of nanofluid flows in mini/micro-channel stacked double-layer heat sink and single-layer micro-channel heat sink. Int J Therm Sci. 2023;191(May 2022).
  • 10. Panja SK, Das B, Mahesh V. Numerical study of parabolic trough solar collector’s thermo-hydraulic performance using CuO and Al2O3 nanofluids. Appl Therm Eng. 2024;248(PB):123179.
  • 11. Gaur SK, Sahoo RR, Sarkar J. Numerical investigation on assessing the influence of diverse-shaped hybrid nanofluids on thermal perfor-mance of triple tube heat exchanger. Powder Technol. 2024;439(Jan-uary):119690.
  • 12. Tian MW, Rostami S, Aghakhani S, Goldanlou AS, Qi C. A techno-economic investigation of 2D and 3D configurations of fins and their effects on heat sink efficiency of MHD hybrid nanofluid with slip and non-slip flow. Int J Mech Sci. 2021;189(July 2020):105975.
  • 13. Ghaneifar M, Arasteh H, Mashayekhi R, Rahbari A. Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition : Optimization of layers thickness. Appl Therm Eng. 2020;181(June):115961.
  • 14. Tang Z, Yin C, Xiang Y, Yu P, Cheng J. Multi-objective optimization of a hybrid nanofluid jet impinging on a microchannel heat sink with semi-airfoil ribs based on field synergy principle. Int J Heat Mass Transf. 2024;225(November 2023):125431.
  • 15. Alnaqi AA, Alsarraf J, Al-Rashed AAAA, Afrand M. Thermal-hydraulic analysis and irreversibility of the MWCNTs-SiO2/EG-H2O non-Newto-nian hybrid nanofluids inside a zigzag micro-channels heat sink. Int Commun Heat Mass Transf. 2021;122(February):105158.
  • 16. Chen J, Jiang J, Ma A, Song D. Research progress of phase change materials ( PCMs ) embedded with metal foam ( a review ). Procedia Mater Sci. 2014;4:389–94.
  • 17. Cui W, Si T, Li X, Li X, Lu L, Ma T, et al. Heat transfer enhancement of phase change materials embedded with metal foam for thermal en-ergy storage: A review. Renew Sustain Energy Rev. 2022;169(Sep-tember):112912.
  • 18. Heo JH, Rohini AK, Kim SM. Thermal design limits for flow boiling of R-134a in large mini/micro-channel heat sinks with wall temperature deviation restriction. Int J Multiph Flow. 2024;175(January):104783.
  • 19. Rehman T, Woo Park C. Optimising heat sink performance with po-rous media–PCM integration: An experimental investigation. Appl Therm Eng. 2024;242(January):122506.
  • 20. Sahel D, Bellahcene L, Yousfi A, Subasi A. Numerical investigation and optimization of a heat sink having hemispherical pin fins. Int Com-mun Heat Mass Transf. 2021;122(February):105133.
  • 21. Souida S, Sahel D, Ameur H, Yousfi A. Numerical simulation of heat transfer behaviors in conical pin fins heat sinks. Acta Mech Slovaca. 2022;26(3):32–41.
  • 22. Vilarrubí M, Regany D, Camarasa J, Ibañez M, Rosell JI, Barrau J. Numerical evaluation of doubly clamped self-adaptive fins acting as vortex generators inside micro heat sinks (MHS). Int J Heat Mass Transf. 2024;220(November 2023).
  • 23. Al-Asadi MT, Al-damook A, Wilson MCT. Assessment of vortex gener-ator shapes and pin fin perforations for enhancing water-based heat sink performance. Int Commun Heat Mass Transf. 2018;91(December 2017):1–10.
  • 24. Al-Sallami W, Al-Damook A, Thompson HM. A numerical investigation of the thermal-hydraulic characteristics of perforated plate fin heat sinks. Int J Therm Sci. 2017;121:266–77.
  • 25. Abdollahi SA, Basem A, Alizadeh A, Jasim DJ, Ahmed M, Sultan AJ, et al. Combining artificial intelligence and computational fluid dynamics for optimal design of laterally perforated finned heat sinks. Results Eng. 2024;21(November 2023):102002.
  • 26. Huang CH, Huang YR. An optimum design problem in estimating the shape of perforated pins and splitters in a plate-pin-fin heat sink. Int J Therm Sci. 2021;170(September 2020):107096.
  • 27. Bencherif B, Sahel D, Benzeguir R, Ameur H. Performance analysis of central processing unit Heat sinks fitted with perforation technique and splitter inserts. ASME J Heat Mass Transf. 2023;145(1).
  • 28. Alam MW, Bhattacharyya S, Souayeh B, Dey K, Hammami F, Rahimi-Gorji M, et al. CPU heat sink cooling by triangular shape micro-pin-fin: Numerical study. Int Commun Heat Mass Transf. 2020;112.
  • 29. Hajialibabaei M, Saghir MZ, Dincer I, Bicer Y. Optimization of heat dis-sipation in novel design wavy channel heat sinks for better perfor-mance. Energy. 2024;297(March):131155.
  • 30. Bezaatpour M, Goharkhah M. Three dimensional simulation of hydro-dynamic and heat transfer behavior of magnetite nanofluid flow in cir-cular and rectangular channel heat sinks filled with porous media. Powder Technol. 2019;344:68–78.
  • 31. Chin SB, Foo JJ, Lai YL, Yong TKK. Forced convective heat transfer enhancement with perforated pin fins. Heat Mass Transf. 2013;49(10):1447–58.
  • 32. Sajedi R, Osanloo B, Talati F, Taghilou M. Splitter plate application on the circular and square pin fin heat sinks. Microelectron Reliab. 2016;62:91–101.
  • 33. Abdelmohimen MAH, Hussien MA, Algarni S, Karali MA, Ahamed Saleel C, Ahmed GMS, et al. Numerical investigation of thermal per-formance enhancement of pin fin heat sink using wings with different angles. Ain Shams Eng J. 2024;15(3):102584.
  • 34. Zohora FT, Haque MR, Haque MM. Numerical investigation of the hy-drothermal performance of novel pin-fin heat sinks with hyperbolic, wavy, and crinkle geometries and various perforations. Int J Therm Sci. 2023;194(March).
  • 35. Haque MR, Hridi TJ, Haque MM. CFD studies on thermal performance augmentation of heat sink using perforated twisted, and grooved pin fins. Int J Therm Sci. 2022;182(August).
  • 36. Meganathan S, Arunkumar R, Ponshanmugakumar A. Numerical analysis of passive heat sink for different shapes. Mater Today Proc. 2020;46(1):3749–55.
  • 37. Haque MR, Redu RR, Rafi MAAA, Haque MM, Rahman MZ. Numeri-cal investigation of heat transfer performance for rectangular, elliptical, and airfoil shaped pin fin heatsinks through the novel combination of perforation and bulge inserts. Int Commun Heat Mass Transf. 2022;138.
  • 38. Introduction To Comsol Multiphysics. Users Guid Multiphysics Model with Finite Elem Methods. 2006;1–26.
  • 39. Interface P, User B. Comsol Multiphysics. Interface. 2012.
  • 40. Sahel D. Thermal performance assessment of a tubular heat ex-changer fitted with flower baffles. J Thermophys Heat Transf. 2021;35(4):726–34.
  • 41. Bencherif B, Sahel D, Ameur H, Benzeguir R. Investigation of the hy-drothermal enhancement of grooved pin fins heat sinks. Int J Ambient Energy. 2022;43(1):8505–15.
  • 42. Anli EC, Teş AA, Bİlİr Ş. Derivation of Dimensionless Governing Equa-tions for Axisymmetric Incompressible Turbulent Flow Heat Transfer Based on Standard k- ϵ Model Standart k- ϵ Modeli Temelinde Eksenel Simetrik Sıkıştırılamaz Türbülanslı Akış Isı Transferi i çin Boyutsuz Ana Denk. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilim Derg. 2020;20:1096–111.
  • 43. Ate A, Bilir Ş. Developing Turbulent Flow in Pipes and Analysis of En-trance Region. Acad Platf J Eng Sci. 2021;9–2:332–53.
  • 44. Ali A, Ozdemir M, Canli E. Effects of pin fin height , spacing and orien-tation to natural convection heat transfer for inline pin fin and plate heat sinks by experimental investigation. Int J Heat Mass Transf. 2021;177:121527.
  • 45. Hakan A, Nacak H, Canli E. Effects of trapezoidal and twisted trape-zoidal tapes on turbulent heat transfer in tubes. Appl Therm Eng. 2022;211:118386.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25f48977-2daf-42c9-bd6f-e4a89419799b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.