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The object of the contribution is the classical F@uheat conduction in the laminate
with functionally graded properties. The laminage made of two conductors, non-
periodically distributed as laminas along one dicet A macrostructure of the laminate
is assumed to be functionally graded along thigdion. In order to analyse heat
conduction, the tolerance averaging technique edu3he approach is based on the
book edited by Cz. Wamiak, Michalak andeHrysiak [10] and by Cz. Wmiak et al. [6].
The aim of this paper is to apply the tolerance eh@djuations of heat conduction for
laminate with functionally graded properties to lgsa two-dimensional stationary heat
transfer. The equations of the tolerance modetaleed by the finite difference method.

Keywords: heat conduction, functionally gradedilzates, tolerance
modelling.

1. INTRODUCTION

The main object under consideration is the lamimaséele of two conductors.
These conductors are distributed non-periodicdtip@the direction normal to
the laminas. Every lamina has the thicknkga is constant). It consists of two
sublaminas (the thickness of each sublamina changagery lamina). From the
macroscopic point of view averaged (macroscopicperties of this laminate
are continuously varied along one direction, cfg.Fila. However, the
microstructure of the laminate can be defined byesdalistribution functions,
which determine the thicknesses of sublaminagsigf.1b.
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The laminates of this kind can be treated as mddene functionally
graded materials (FGM), cf. Suresh and Mortensgn [9

There are many modelling techniques we can usesgearch thermo-
mechanical problems of the functionally graded mal® One of them is the
asymptotic homogenization. As an alternative apgrpdor FG-type materials
the higher-order theory was proposed by Aboudid®&ia and Arnold1] and
then with its reformulation by Bansal and Pinde2h In this paper we focus on
the tolerance averaging techniqube(tolerance modelling), extended on FG-
type materials in books edited by Cz. ¥k, Michalak andetrysiak [10] and
by Cz. Waniak et al. [6]. This technique was adopted to ys®lvarious
problems of FG-type materials and structures imesesf papers, e.g. for heat
conduction in transversally graded laminat€6 (aminates) by Xdrysiak and
Radzikowska [3, 4, 5] and in longitudinally gradsamposites by Michalak and
M. Wozniak [7], Michalak, Cz. Wegniak and M. Waniak [8]. Some additional
examples of applications of this technique for cosif@s can be found in the
books [6, 10].

a) the £' conductor b)
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Fig. 1. A cross section of a laminate: a) the msoopic point of view,
b) the microscopic point of view

The main aim of this contribution is to apply theletance model
equations of heat conduction for laminates withcfiomally graded properties to
analyse stationary heat conduction.
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2. TOLERANCE MODELLING

2.1. Modelling foundations
Let subscripts, j related to the coordinate syst@ry, run over 1, 2. Introduce
denotationsd; as a derivative af; 0, as a derivative of. LetH be the laminate
thickness along thg-axis, andL be the length dimension along thexis. We
assume that the laminate under consideration oesupie regiorQx= on the
plane Oxy, whereQ=(0,H), ==(0,L). This laminate is made of two conductors
distributed inm laminas with the constant thickneas Properties of these
conductors are described by: specific heitg” and heat conduction tensors
with the components , k' i,j=1,2. It is assumed that the thickn@ssatisfies
the conditiol\<<H and is calledhe microstructure parameter. Everyn™ lamina
consists of two homogeneous sublaminas with thesegA’ and A\’ =A -\
which are not constant, cf. Fig. 1b. We can intoslihe material volume
fractions in then™ lamina defined asv'=\'/A, v'=\"/A. Sequence ¥.},
n=1,...m, is monotone and satisfies the conditjof, -V’ |<<1, for n=1,... m-1.
Becausev, +v" =1 sequencey’ } satisfies similar conditions. Sequences ],
{v'}, n=1,..m, can be approximated by continuous functiang), v"(:),
describing the gradation of material propertiesnglthex axis. The functions
v'(:), v"(-) can be calledhe fraction ratios of materials. Let us also define the
non-homogeneity ratio by(:) = [v'(-)v”(-)]*2 . Moreover, these functions'(’),
v"(), v(), are assumed to be slowly-varying, cf. the bodlted by Cz.
Wozniak, Michalak andetirysiak [10].

Let T denote the unknown temperature field. Moreover theat
conduction problem in the TG laminate will be asely in the framework of the
Fourier's model, i.e. described by the followingiation (without heat sources):

9,(kd,T)-cT =0. (2.1)

For the TG laminate all coefficients in equatiorif2i.e.k;=k;(x), c=c(x),
are highly-oscillating, tolerance-periodic, non-tonous functions irx. Using
the tolerance modelling, equation (2.1) can beacegad by the differential
equations with continuous, smooth, slowly-varyimgeficients, cf. the book
edited by Cz. Weniak, Michalak and etlrysiak [10] and by Cz. Wmiak et al.

[6].

2.2. Conceptsand assumptions

The tolerance modelling concepts, the modellingiaggions and the modelling
procedure can be found in books [6, 10]. Belowy dew of them are reminded.
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For an arbitrary integrable functioh (which can also depend oy),
defined inQ , the averaging operator is given by:

X+A /2

<f>(=n7[ f(e)ee (22)

for xO[A/2, H-A/2]. It can be shown that for the tolerance-pedddnctionf of
X, its averaged value calculated from (2.2) is avBlevarying function inx (cf.
the books [6, 10]).

The fundamental modelling assumption is mentioreddvi.

The assumption ithe micro-macro decomposition, in the following form:

T(xy) =8(x,y)+d(x)w(x,y), 2.3)

whered(-y), Y(-y) are slowly-varying functions. The basic unknowriunction
3(LYy) called the macrotemperature; an additional basic unknown ithe
fluctuation amplitude Y(LY); ¢(I¥ is the knownfluctuation shape function. The
function ¢(-) is assumed to be continuous, linear acrossyesablamina
thickness and of an ord&(A); it can be given by:

M3 \‘)’(();)) [2x+V"(R)] for xO(-A/2 =\/2+V'(X)
o(x) = - (2.4)
e \:’,,((f_()) [2x+V(Q)]  for xO(A/2-v"(X),\/2)

where X is a centre of a cell with a length dimensiprand it's independent
fromx, cf. the book [10].

2.3. Tolerance model equations

Using the tolerance modelling and denoting the smd&anctional coefficients:
K =<k, >, K,, =<k,, >, K=<k,0,> K=<k,0,00¢ >, we obtain the averaged
heat conduction equations in the form (cf. [3, B 5

al(K 6119)4‘ Kzz a2219 + al(R lIJ) =0,

o (2.5)
Koo +Ky-M?K,,0,p=0.

Equations (2.5) have the coefficients being slovdyying functions irx,
in contrast to equation (2.1), which has functipnabn-continuous, highly
oscillating coefficients. Some terms depend exyicon the microstructure
parametei.

Equations (2.5) together with the micro-macro degosition (2.3)
constitute the tolerance model of heat conduction for transversally graded
laminates. These equations take into account the effediehticrostructure size
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on heat transfer for these composites. It can Berobd that for the TG laminate
under consideration boundary conditions for the notamperatureé have to be
formulated on the edges0, H andy=0, L, but for the fluctuation amplitudg
only on the edgeg=0, L.

24. Applications: stationary heat conduction

Denote by k, =k}, =K', k/, =k}, =k" heat conduction coefficients in
sublaminas and introducing notations:

KO = vek+v ook, K(x)= 2v3u(x)(k -k"), K(x)=12v (k" +v"(x)k),
equations (2.5) take the form:

9,(Ka,9)+Ka 9+, (Kw)=0,
KOS +KY-Nv Ko, p=0.

Equations (2.6) together with the boundary condgiovere changed to
the system of differential equations. A special etinal program based on the
finite difference method was written by Mister ArtMVirowski. Using this
program, equations (2.6) were solved.

(2.6)

3. RESULTS

In this section some effects of conductor propertef. heat conduction
coefficients on the laminate temperature are ptesen

Let the layer thicknesd be coupled with the microstructure paramater
by the relationH=mA (m is the number of laminas). The fraction ratios of
materials are defined as the exponential functions:
1-exp@x/H) V() =1-v'(%)

1-exp@)

For the macrotemperatur@ we assume the following boundary
conditions:
a) as a parabolical functions - Fig. 2a and 3a,

Vi(x) =

9(x0)=9(x,L) = 10{%] —100& +25, 9(0,y)=9(H.y)= 10{%] —100% +25;
b) as a constant and a parabolical functions - Figarb3b,
9(x0)=9(x,L)=25, 9(0.y)=9(H.y) :10({%] —1oo%+ 25.

The boundary conditions are shown as a schema gn &,c. For the
fluctuation amplitudep the boundary conditions we assume as equal zero.
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Some calculation results are shown in Fig. 2-3.s€hglots are made for
L=H, m=20, thus the ratia/H=0.05. In a numerical program the division fbr
it is 4000, forL — 30. In Fig. 2 there are presented the temperatistributions
for the ratiok”/k'=10, but Fig. 3 shows plots of the temperaturetifar ratio
k"/k'=0.1.

a)

Fig. 2. Temperature distributions for the rdtfék'=10: a) for boundary conditions
shown as a schema in Fig. 4a; b) for boundary tiomdi shown as a schema in Fig. 4c.

a)

Fig. 3. Temperature distributions for the rdtf¢k’'=0.1:
a) for boundary conditions shown as a schema in4gig
b) for boundary conditions shown as a schema in4tig



Two-dimensional heat conduction in the laminate with the functionally graded properties 67

25000 = 23.913
23.913 = 23.258
a) 25 25 b) 23,258 = 22516 C) 25 25

22516 == 22,098

22.098 = 21.515
\_/ 21,515 =— 20,333
20,995 = 20,547
25 25 20,547 — 20,180 25 25
20,160 — 19.870
19.870 — 19.423
19.423 — 18.873

18.873 18.179

18.179 . 17.381
17.381 . 16.469
16,469 __ 15341
15.341 . 14.060
o5 25 14060 — 12,536
12.536 == 10.713
10.713 - 8.465
8,465 = 5.364

25 o5 5,564 — 0.000

25

25 25

Fig. 4. Schema of the boundary conditions for tlemtemperaturé (a), (c) and the
legend of the coloring plots (b).

4. REMARKS

Under the calculation results for the stationargtifo®mnduction, we can observe:
» Distributions of the temperature:

- depend on the differences between heat conduabefficientsk’, k”,

- are symmetric along theaxis,

- are not symmetric along thxeaxis, because of the laminas distribution.

The tolerance averaging technique it seems to beffactive tool to
research heat conduction in transversally gradedhktes.

ACKNOWLEDGEMENTS

The Ministry of Science and Higher Education of &l support this
contribution - grant No. N N506 398535.
The coloring plots are made thanks to the Autod&sk 2010 System.

LITERATURA

1. Aboudi J., Pindera M.-J., Arnold S.Mdigher-order theory for functionally
graded materials, Composites. Part B0 (1999) 777-832.

2. Bansal Y., Pindera M.-JEfficient reformulation of the thermoel astic
higher-order theory for functionally graded materials, J. Therm. Stressez6
(2003) 1055-1092.

3. Xdrysiak J., Radzikowska AOn the modelling of heat conduction in a non-
periodically laminated layer, J. Theor. Appl. Mech45 (2007) 239-257.

4. Jedrysiak J., Radzikowska AStationary heat conduction in a laminate with
functionally graded macrostructure (FGM), Build. Phys. Theory Prac8,
(2008) 23-26.



68 Alina Radzikowska, Artur Wirowski

5. Jdrysiak J., Radzikowska ASome problems of heat conduction for
transversally graded laminates with non-uniform distribution of laminas,
Arch. Civil Mech. Engin., (in the course of publiican).

6. Mathematical modelling and analysis in continuum mechanics of
microstructured media, eds. Cz. Weniak, et al., Publishing House of
Silesian University of Technology, Gliwice 2010.

7. Michalak B., Waniak M.: On the heat conduction in certain functionally
graded composites, in: Selected Topics in the Mechanics of Inhomegers
Media, eds. Cz. Wamiak, R.Switka, M. Kuczma, University of Zielona
Gora 2006, 229-238.

8. Michalak B., Waniak Cz., Waniak M.: Modelling and analysis of certain
functionally graded heat conductor, Arch. Appl. Mech, 77 (2007) 823-834.

9. Suresh S., Mortensen Azundamentals of functionally graded materials,
Cambridge, The University Press 1998.

10. Thermomechanics of microheterogeneous solids and structures. Tolerance
averaging approach, eds. Cz. Weniak, B. Michalak, J.gHrysiak,
Wydawnictwo Politechniki Lodzkiej, £6d2008.

DWUWYMIAROWE ZAGADNIENIE PRZEWODNICTWA CIEPLA
W LAMINACIE O FUNKCYJNEJ GRADACJI WLASNGCI

Streszczenie

Przedmiotem rozwan pracy jest przewodnictwo ciepta w klasycznym, ferowskim
sformutowaniu, odniesione do laminatu z jednokikaws funkcyjm gradacy
wlasndci. Rozpatrywany jest laminat ziony z wielu dwuskfadnikowych warstw,
ktérego witaciwosci termiczne zmieniaj sie funkcyjnie w kierunku prostopadiym do
laminowania. W pracy zelio sk przypadkiem, gdy gruldé warstw jest stata, a kda
warstwa zlgona jest z dwdch eych, jednorodnych i izotropowych materiatéw.
W skali makro wilasnéi laminatu zmieniaj sie w sposéb cigly i gtadki wzdhe
kierunku prostopadiego do laminowania. W mikroskathinat ma budow okreilona
przez jednorodne funkcje rozktadu materialéw, dobrdak, aby ssiednie warstwy
»,malo” si¢ od siebie rénity. Celem pracy jest analiza stacjonarnego, dwuigyowego
zagadnienia przewodnictwa ciepta zydem techniki tolerancyjnego stedniania.
Technika ta pozwala zagi¢ rownanie przewodnictwa ciepta o silnie oscytyich,
nieciaglych  wspditczynnikach  funkcyjnych  uktadem  réuina rézniczkowych

o wspotczynnikach funkcyjnych gtadkich i wolnozmigieh. Otrzymany uktad réwmna
rozwiagzano metoa roznic skaczonych. Przedstawiono rozktady temperatury
w zaleznosci od proporcji mgdzy wspotczynnikami przewodzenia ciepta, przymych
warunach brzegowych.



