PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Breakthrough Approach for Superior Cyanobacteria (Microcystis aeruginosa) Removal and Phosphorus Adsorption

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examines the effectiveness of modified drinking water treatment residue (MDWTR) in removing Microcystis aeruginosa, as well as its collaborative action with poly aluminium chloride (PAC) for effective contaminant removal. In addition, the phosphorus adsorption capacities of MDWTR samples with differing particle sizes are evaluated. The results indicate that MDWTR alone has a positive effect on Microcystis aeruginosa removal, with S-type MDWTR(<90 μm) exhibiting the highest removal efficiency. Moreover, when combined with PAC, MDWTR’s removal efficiency is significantly enhanced, further validating its efficacy. The analysis of isotherms provides strong evidence for the substantial adsorption capacities of MDWTR samples, with various MDWTR types exhibiting distinct affinities. These results demonstrate MDWTR’s potential as adsorbent, Microcystis aeruginosa removing and emphasise its versatility in water treatment applications.
Twórcy
  • College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
  • College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
  • Office of Physical and Environmental Management, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
  • College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
Bibliografia
  • 1. Abu-Hasan, H., Muhammad, M.H., Ismail, N.I. 2020. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. Journal of Water Process Engineering, 33,101035.
  • 2. Adeyemo, A.A., Adeoye, I.O., Bello, O.S. 2017. Adsorption of dyes using different types of clay: a review. Applied Water Science, 7(2), 543–568.
  • 3. Aksu, Z., Tatli, A.I., Tunç, Ö. 2008. A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium and kinetic parameters. Chemical Engineering Journal, 142(1), 23–39.
  • 4. Alawamleh, H.S.K., Mousavi, S., Ashoori, D., Salman, H.M., Zahmatkesh, S., Sillanpää, M. 2023. Wastewater management using coagulation and surface adsorption through different polyferrics in the presence of TiO2-g-PMAA particles. Water, 15(1), 145.
  • 5. Arruda, R.S., Pessoa Noyma, N., De Magalhães, L., Coelho, M., Mesquita, B., Costa De Almeida, É., Pinto, E., Lürling, M., Marinho, M.M. 2021. “Floc and Sink” technique removes cyanobacteria and microcystins from tropical reservoir. Water, 13(6), 405.
  • 6. Azizian, S., Eris, S., Wilson, L.D. 2018. Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chemical Physics, 513, 99–104.
  • 7. Bacelo, H., Pintor, A.M.A., Santos, S.C.R., Boaventura, R.A.R., Botelho, C.M.S. 2020. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chemical Engineering Journal, 381, 122566.
  • 8. Backer, L.C., Manassaram-Baptiste, D., LePrell, R., Bolton, B. 2015. Cyanobacteria and algae blooms: Review of health and environmental data from the harmful algal bloom-related illness surveillance system (HABISS) 2007–2011, Toxins, 7(4), 1048–1064.
  • 9. Briand, E., Escoffier, N., Straub, C., Sabart, M., Quiblier, C., Humbert, J.F. 2009. Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME Journal, 3(4), 419–429.
  • 10. Bricker, S.B., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C., Woerner, J. 2008. Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algae, 8(1), 21–32.
  • 11. Brooks, B.W., Lazorchak, J.M., Howard, M.D.A., Johnson, M.V.V., Morton, S.L., Perkins, D.A.K., Reavie, E.D., Scott, G.I., Smith, S.A., Steevens, J.A. 2016. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environmental Toxicology and Chemistry, 35(1), 6–13.
  • 12.Cavalcante, H., Araújo, F., Becker, V., Lucena-Barbosa, J.E. 2022. Control of internal phosphorus loading using coagulants and clays in water and the sediment of a semiarid reservoir susceptible to resuspension. Hydrobiologia, 849, 4059–4071.
  • 13. Kasprzyk, M., Czerwionka, K., Gajewska, M. 2021. Waste materials assessment for phosphorus adsorption toward sustainable application in circular economy. Resources, Conservation and Recycling, 168, 105335.
  • 14. Kuster, A.C., Huser, B.J., Padungthon, S., Junggoth, R., Kuster, A.T. 2021. Washing and heat treatment of aluminum-based drinking water treatment residuals to optimize phosphorus sorption and nitrogen leaching: Considerations for lake restoration. Water, 13(18), 2465.
  • 15. Kuster, A.C., Huser, B.J., Thongdamrongtham, S., Padungthon, S., Junggoth, R., Kuster, A.T. 2021. Drinking water treatment residual as a ballast to sink Microcystis cyanobacteria and inactivate phosphorus in tropical lake water. Water Research, 207, 117792.
  • 16. Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B. 1998. Surface area and pore texture of catalysts. Catalysis Today, 41(1-3), 207-219.
  • 17. Li, F., Wang, M., Liu, S., Hao, Y. 2019. Pore characteristics and influencing factors of different types of shales. Marine and Petroleum Geology, 102, 391–401.
  • 18. Li, X., Cui, J., Pei, Y. 2018. Granulation of drinking water treatment residuals as applicable media for phosphorus removal. Journal of Environmental Management, 213, 36–46.
  • 19. Liu, B., Qu, F., Liang, H., Van der Bruggen, B., Cheng, X., Yu, H., Xu, G., Li, G. 2017. Microcystis aeruginosa-laden surface water treatment using ultrafiltration: Membrane fouling, cell integrity and extracellular organic matter rejection. Water Research, 112, 83–92.
  • 20. Lucena-Silva, D., Molozzi, J., Severiano, J. dos S., Becker, V., Lucena Barbosa, J.E. de. 2019. Removal efficiency of phosphorus, cyanobacteria and cyanotoxins by the “flock & sink” mitigation technique in semi-arid eutrophic waters. Water Research, 159, 262–273.
  • 21. Lürling, M., Kang, L., Mucci, M., van Oosterhout, F., Noyma, N.P., Miranda, M., Huszar, V.L.M., Waajen, G., Marinho, M.M. 2020. Coagulation and precipitation of cyanobacterial blooms. Ecological Engineering, 158, 106032.
  • 22. Matilainen, A., Vepsäläinen, M., Sillanpää, M. 2010. Natural organic matter removal by coagulation during drinking water treatment: A review. Advances Colloid and Interface Science, 159(2), 189–197.
  • 23. Mowe, M.A.D., Mitrovic, S.M., Lim, R.P., Furey, A., Yeo, D.C.J. 2015. Tropical cyanobacterial blooms: A review of prevalence, problem taxa, toxins and influencing environmental factors. Journal of Limnology, 74(2), 205–224.
  • 24. Noyma, N.P., de Magalhães, L., Furtado, L.L., Mucci, M., van Oosterhout, F., Huszar, V.L.M., Marinho, M.M., Lürling, M. 2016. Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants and phosphorus adsorbing natural soil and modified clay. Water Research, 97, 26–38.
  • 25. Pj, O., Botha, A.-M., Ju, G. 2004. Microcystis aeruginosa: source of toxic microcystins in drinking water. African Journal of Biotechnology, 3(3), 159–168.
  • 26. Rice, E.W., Bridgewater, L., 2012. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC.
  • 27. Rollwagen-Bollens, G., Connelly, K.A., Bollens, S. M., Zimmerman, J., Coker, A. 2022. Nutrient control of phytoplankton abundance and biomass, and microplankton assemblage structure in the lower Columbia river (Vancouver, Washington, USA). Water, 14(10), 1599.
  • 28. Shen, C., Zhao, Y., Li, W., Yang, Y., Liu, R., Morgen, D. 2019. Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chemical Engineering Journal, 372, 1019–1027.
  • 29. Song, W., Xie, Y., Hu, J., Wu, X., Li, X. 2021. Parametric optimization of cyanobacterial coagulation at exponential and decline phases by combining polyaluminum chloride and cationic polyacrylamide. Aqua Water Infrastructure, Ecosystems and Society, 70(3), 317–327.
  • 30. Sukenik, A., Kaplan, A. 2021. Cyanobacterial harmful algal blooms in aquatic ecosystems: A comprehensive outlook on current and emerging mitigation and control approaches. Microorganisms, 9(7), 1472.
  • 31. Sultana, S., Karmaker, B., Saifullah, A.S.M., Galal Uddin, M., Moniruzzaman, M. 2022. Environmentfriendly clay coagulant aid for wastewater treatment. Applied Water Science, 12(1), 6.
  • 32. Thongdam, S., Kuster, A.C., Huser, B.J., Kuster, A.T. 2021. Low dose coagulant and local soil ballast effectively remove cyanobacteria (Microcystis) from tropical lake water without cell damage. Water, 13(2), 111.
  • 33. Tian, C., Zhao, Y.X. 2021. Dosage and pH dependence of coagulation with polytitanium salts for the treatment of Microcystis aeruginosa-laden and Microcystis wesenbergii-laden surface water: The influence of basicity. Journal of Water Process Engineering, 39, 101726.
  • 34. Uddin, M. K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462.
  • 35. Wang, C., Jiang, H.L., Yuan, N., Pei, Y., Yan, Z. 2016. Tuning the adsorptive properties of drinking water treatment residue via oxygen-limited heat treatment for environmental recycle. Chemical Engineering Journal, 284, 571–581.
  • 36. Wang, C., Wu, Y., Bai, L., Zhao, Y., Yan, Z., Jiang, H., Liu, X. 2018. Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water. Journal of Environmental Management, 217, 363–372.
  • 37. Wu, B., Wan, J., Zhang, Y., Pan, B., Lo, I. M.C. 2020). Selective Phosphate Removal from Water and Wastewater using Sorption: Process Fundamentals and Removal Mechanisms. Environmental Science and Technology. American Chemical Society, 54(1), 50–66.
  • 38. Zamparas, M., Kyriakopoulos, G.L., Drosos, M., Kapsalis, V.C., Kalavrouziotis, I.K. 2020. Novel composite materials for lake restoration: A new approach impacting on ecology and circular economy. Sustainability, 12(8), 3397.
  • 39. Zhong, F., Liu, W., Lv, M., Deng, Z., Wu, J., Cheng, S., Ji, H. 2018. The use of vertical flow constructed wetlands for the treatment of hyper-eutrophic water bodies with dense cyanobacterial blooms. Water Science and Technology, 77(5), 1186–1195.
  • 40. Zhou, X., He, Y., Li, H., Wei, Y., Zhao, L., Yang, G., Chen, X. 2020. Using flocculation and subsequent biomanipulation to control microcystis blooms: A laboratory study. Harmful Algae, 99, 101917.
  • 41.Zhou, Y., Li, X., Xia, Q., Dai, R. 2020. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation. Science of the Total Environment, 700, 134501.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25f28fca-9026-4009-8329-3fe88010ba5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.