PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical identification of the combustion of air-fuel mixture surrounded by non-combustible gas in a rapid compression machine

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of non-combustible gas injection on combustion rates in an engine cylinder with centrally positioned ignition point has been discussed. The flame temperature distribution and its changes were taken into account in this research. The analysis of the influence of exhaust gas content in the cylinder on the combustion process has been based on the interpretation of high speed camera images for the period from the ignition start to full flame coverage of the combustion chamber. Authors performed a comparative analysis of the combustion process thermodynamic parameters based on the obtained characteristics. In order to demonstrate the charge stratification influence and the proportion of flue gas in the cylinder, a flame propagation analysis was performed through high frequency image sampling and using the flame temperature distribution in the combustion volume. The two-color method was used for determining this temperature. A flame temperature distribution example at selected combustion process stages was presented as well as for the entire combustion process. A significant reduction in the area covered by the flame was shown to be the result of an increase in the flue gas proportion in the cylinder. The flame area reduction was found to be 46% when using a 25% EGR share, while with an EGR contribution of 40%, the flame area was decreased by 78%. The flame covered area reduction was the result of "fencing" of the flame from the cylinder walls by an exhaust gas layer. According to changes in the flame area, the largest share of high temperatures, in the range 1800-2000 K, has also decreased from around 19% to 23%.
Rocznik
Strony
93--106
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Poznan 60-965, Poland, tel.: +48 61 224 45 02; fax: +48 61 665 22 04
autor
  • Poznan University of Technology, Poznan 60-965, Poland, tel.: +48 61 224 45 02; fax: +48 61 665 22 04
autor
  • Poznan University of Technology, Poznan 60-965, Poland, tel.: +48 61 224 45 02; fax: +48 61 665 22 04
Bibliografia
  • [1] ITF (2017), ITF Transport Outlook 2017, OECD Publishing, Paris. doi.org/10.1787/9789282108000-en
  • [2] Alger T. Gasoline engine technology for high efficiency. Southwest Research Institute, San Antonio, 2014.
  • [3] Asad U, Zheng M. Efficacy of EGR and boost in single-injection enabled low temperature combustion. SAE Int. J. Engines 2009;2(1):1085–97.
  • [4] Dingelstadt R, Ewert S, Werz M, Tremble P. Potential of exhaust gas recirculation in gasoline engines. MTZ 2014;75(9):38–43.
  • [5] Tutak W, Possibility to reduce knock combustion by EGR in the SI test engine. Journal of KONES Powertrain and Transport 2011;18(3):485–92.
  • [6] Wei H, Zhu T, Shu G, Tan L, Wang Y. Gasoline engine exhaust gas recirculation – a review. Applied Energy 2012;99:534–44.
  • [7] Cieslik W, Pielecha I, Kapusta L. The concept of combustion system with use of recirculated exhaust gas in the spark ignition engine. Combustion Engines 2015;162(3):257–63.
  • [8] Cieslik W, Pielecha I. Analysis of the possibilities to achieve adiabatization process of combustion surrounded by inactive gases in RCM. Combustion Engines 2017;168(1):27–31.
  • [9] Cieslik W, Pielecha I, Wisłocki K. Optical study of the use of recirculated gases for adiabatization of combustion process in the SIDI engine. MATEC Web of Conferences 2017;118:00006.
  • [10] Heitland H, Rinne G, Wislocki K. Chancen hybrider Antriebssysteme im zukünftigen Strassenverkehr. MTZ 1993;2:94–101.
  • [11] Wislocki K, Heitland H. Arbeitsverfahren für einen Verbrennungsmotor, Deutsche Patent- und Markenamt, 43 05 468, 1999.
  • [12] Wisłocki K, Heitland H. Working Procedure for a Two-Stroke Combustion-Engine as well as a Two-Stroke Combustion-Engine, patent USA No. 5,505,172, dated 9.04.1996.
  • [13] Divekar P, Han X, Yu S, Chen X. The impact of intake dilution and combustion phasing on the combustion stability of a diesel engine. SAE Technical Paper 2014-01-1294, 2014.
  • [14] Asad U, Divekar P, Zheng M, Tjong J. Low temperature combustion strategies for compression ignition engines: operability limits and challenges. SAE Technical Paper 2013-01-0283, 2013.
  • [15] Oh D, Brouillette M, Plante J. Reduced convective combustion chamber wall heat transfer losses of hydrogen-fueled engines by vortex-stratified combustion – part 1: background and optical engine observations. SAE Int. J. Engines 2017;10(5).
  • [16] Wisłocki K, Pielecha I, Czajka J, Maslennikov D, Kaźmierowski J. The assessement of the usefulness of a Rapid Compression Machine in optical research on the injection and combustion processes of liquid fuels. Combustion Engines 2010;143(4):3–14.
  • [17] Hansen M, Flame Temperature Measurement in an Internal Combustion Engine, Master Thesis, DTU Mechanical Engineering, 2010.
  • [18] Mark PB, Singh S, Reitz RD. Gradient effects on two-color soot optical pyrometry in a heavy-duty DI diesel engine. Combustion and Flame 2008;153(1–2):216–27.
  • [19] Jiang F, Liu S, Liang S, Li Z, Wang X, Lu G, Visual flame monitoring system based on two-color method. Journal of Thermal Science 2009; 18(3): 284-288.
  • [20] Heywood JB. Internal combustion engine fundamentals. New York: McGraw-Hill; 1988.
  • [21] Cieslik W, Pielecha I, Borowski P, Wisłocki K. Evaluation of repeatability of rapid compression machine under selected conditions. ECM 7th – European Combustion Meeting, Budapest, 2015.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25f0a611-7d3d-4480-b07d-c0377c85c3f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.