PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The laboratory investigation of the innovative sensor for torsional effects in engineering structures’ monitoring

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of this work is to characterize the performance of an interferometric fibre sensor which has been designed in order to register rotational phenomena, both in seismological observatories and engineering constructions. It is based on a well−known Sagnac effect which enables to detect one−axis rotational motions in a direct way and without any reference system. The presented optical fibre sensor – FOSREM allows to measure a component of rotation in a wide range of signal amplitude form 10–8 rad/s to 10 rad/s, as well as frequency from 0 Hz to the upper frequency from 2.56 Hz to 328.12 Hz. The laboratory investigation of our system indicated that it keeps theoretical sensitivity equal to 2·10–8 rad/s/Hz1/2 and accuracy no less than 3·1–8 to 1.6·10–6 rad/s in the above mentioned frequency band. Moreover, system size that equals 0.36×0.36×0.16 m and opportunity to remotely control the system via Internet by special server make FOSREM a mobile and autonomous device.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00–908 Warsaw, Poland
  • m−Soft Ltd., ul. Sotta Sokoła 4–9, 02–790 Warsaw, Poland
autor
  • Dep. of Microelectronics and Computer Science, Lodz University of Technology, ul. Wólczańska 221/223, 90–924 Łódź, Poland
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00–908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00–908 Warsaw, Poland
Bibliografia
  • 1. H. Igel, J. Brokesova, J. Evans, and Z. Zembaty, “Preface to the special issue on advances in rotational seismology: instrumentation, theory, observations and engineering”, J. Seismol. 16, 571–572 (2012).
  • 2. W.H.K. Leee, M. Celebi, M.I. Todorovska, and H. Igel, “Introduction to the special issue on rotational seismology and enginering applications”, Bull. Sesimol. Soc. Am. 99, 945–957 (2009).
  • 3. A.C. Eringen, Mirocontinuum field theories. Vol. 1 Foundations and Solids, Springer−Verlag, ISNB 0−387−95275−6, New York, 1999.
  • 4. R. Teisseyre and W. Boratyński, “Continuum with self−rotation fields: evolution of defect fields and equations of motion”, Acta Geophys. 50, 223–229 (2002).
  • 5. R. Teisseyre, M. Białecki, and M. Górski, “Degenerated mechanics in a homogeneous continuum: potentials for spin and twist”, Acta Geophys. 53, 219–223 (2005).
  • 6. R. Teisseyre and M. Gorski, “Transport in fracture processes: fragmentation of defect fields and equations of motion”, Acta Geophys. 57, 583–599 (2009).
  • 7. Z. Droste and R. Teisseyre, “Rotational and displacemental components of ground motion as deduced from data of the azimuth system of seismograph”, Publs Inst. Geophys. Pol. Acad. Sc. 97, 157–167 (1976).
  • 8. T. Moriya and R. Teisseyre, “Discussion on the recording of seismic rotation waves”, Acta Geophys. Pol. 47, 351–362 (1999).
  • 9. U. Schreiber, M. Schneider, C.H. Rowe, G.E. Stedman, and W. Schlüter, “Aspects of ring lasers as local earth rotation sensors”, Surveys in Geoph. 22, 603–611 (2001).
  • 10. L.R. Jaroszewicz, Z. Krajewski, L. Solarz, P. Marć, and T. Kostrzyński, “A new area of the fiber−optic Sagnac interferometer application”, Intern. Microwave and Optoelectronics Conference, Iguazu Falls, 661–666, 2003.
  • 11. L.R. Jaroszewicz, Z. Krajewski, L. Solarz, and R. Teisseyre, “Application of the fibre−optic Sagnac interferometer in the investigation of seismic rotational waves”, Meas. Sci. Technol. 17, 1186–1193 (2006).
  • 12. U. Schreiber, G.E. Stedman, H. Igel, and A. Flaws, “Ring laser gyroscopes as rotation sensors for seismic wave studies”, in: R. Teisseyre, M. Takeo, E. Majewski, (Eds) Earthquake Source Asymmetry, Structural Media and Rotation Effects, Springer−Verlag Berlin Heidelberg, 29, 377–390, (2006).
  • 13. Z. Zembaty, A. Rossi, and A. Spagnoli, “Estimation of rotational groung motion effects on the bell Tower of Parma cathedral”, in: Zembaty Z., and De Stefano M. (Eds) Seismic Behaviour and Design of Irregular and Complex Civil Strutures II, Springer, Dordrecht, Part I.4, 35–48, 2016.
  • 14. K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The application of fiber optic gyroscopes for the measurement of rotations in structural engineering”, Bull. Sesimol. Soc. Am. 99, 1207–1214 (2009).
  • 15. Z. Zembaty, S. Kokot, and P. Bobra, “Application of rotational rate sensors in measuring beam flexure and structural health monitoring” in: Zembaty Z., and De Stefano M. (Eds) Seismic Behaviour and Design of Irregular and Complex Civil Structures II, Springer, Dordrecht, 6, 65–76, 2016.
  • 16. R. Franco-Anaya, A.J. Carr, and K U. Schreiber, “Laboratory and in−situ measurements of structural rotations using fibre−optic gyroscopes”, The Fifthteenth World Conference On Earthquake Engineering, Lisbon, 2012.
  • 17. McGinnis “Apparatus and method for detecting deflection of a tower”, U.S. Patent application, No.0107671 A1, 2004.
  • 18. V. Gicev and M.D. Trifunac, “2009 Rotations in a shear−beam model of a seven−story building caused by nonlinear waves during earthquake excitation”, Struct. Control Hlth. 16, 460–82 (2009).
  • 19. G. Sagnac, “The light ether demonstrated by the effect of the relative wind in ether into a uniform rotation interferometer”, Acad. Sci. 95, 708–710 (1913).
  • 20. Z. Zembaty, S. Kokot, and P. Bobra, “Application of rotation rate sensors in an experiment of stiffness ‘reconstruction'”, Smart Mater. Struct. 22, 077001 (2013).
  • 21. L. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinówko, and J. Kowalski, “AFORS autonomous fibre−optic rotational seismograph: Design and application”, Acta Geophys. 59, 578–596 (2011).
  • 22. L.R. Jaroszewicz, Z. Krajewski, and K.P. Teisseyre, “Usefulness of AFORS – Autonomous Fibre−Optic Rotational Seis mograph for investigation of rotational phenomena”, J. Seismol. 16, 573–586 (2012).
  • 23. A. Kurzych, K. P. Teisseyre, Z. Krajewski, and L. R. Jaroszewicz, “Rotational Components of the Seismic Fields Caused by Local Events”, in: Abbas M. (Ed) Earthquake engineering – form engineering seismology to optimal seismic design of engineering structures, Intech Rijeka, Croatia, 6, 163–188, 2015.
  • 24. A. Kurzych, L.R. Jaroszewicz, Z. Krajewski, K.P. Teisseyre, and J.K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena”, Sensors 14, 5459–5469 (2014).
  • 25. E.J. Post, “Sagnac effect”, Rev. Mod. Phys. 39, 475–493 (1967).
  • 26. X. Dai, X. Zhao, B. Cai, G. Yang, K. Zhou, and C. Liu, “Quantitative analysis of the Shupe reduction in a fiber−optic Sagnac interferometer”, Opt. Eng. 41, 1155–1156 (2002).
  • 27. Z. Krajewski, “Fiber−optic Sagnac interferometer as System for rotational phenomena investigation connected with seismic events”, [IN POLISH]. Doctoral Thesis, MUT, Poland 2005.
  • 28. Z. Krajewski, L.R. Jaroszewicz, and L. Solarz, “Optimization of fiber−Optic Sagnac interferometer for detection of rotational seismic events”, Proc. of SPIE 5952, 240–248 (2005).
  • 29. E. Udd and B.W. Spillman, Fiber Optic Sensors, New Jersey: John Wiley&Sons, Inc., 2011.
  • 30. J.K. Kowalski, L.R. Jaroszewicz, Z. Krajewski, A. Kurzych, and P. Marć, “Measurement method and system for measuring amplitude of first two harmonics of signal derived from Sagnac system”, patent application PCT/IB2015/059521 from 10−12−2015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25ef2021-ed03-4d0e-98e8-824e0774d952
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.