PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Image encryption combining discrete fractional angular transform with Arnold transform in image bit planes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new image encryption algorithm by using a discrete fractional angular transform and Arnold transform in image bit planes is investigated. In the image encryption algorithm, the original image is encrypted by the Arnold transform in image bit planes firstly, and then the resulting image is encrypted by the discrete fractional angular transform further. The key of the image encryption algorithm includes the parameters of the Arnold transform and the order of the discrete fractional angular transform. It is shown that the proposed image encryption algorithm is of high security and strong enough to counteract some conventional image attack manners.
Czasopismo
Rocznik
Strony
225--236
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Shanghai Key Laboratory of Integrate Administration Technologies for Information Security, School of Cyber Security, Shanghai Jiao Tong University, Shanghai 200240, China
autor
  • School of Information Engineering, Nanchang University, Nanchang 330031, China
autor
  • School of Information Engineering, Nanchang University, Nanchang 330031, China
autor
  • School of Information Engineering, Nanchang University, Nanchang 330031, China
  • Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, 15261, USA
Bibliografia
  • [1] YING-QIAN ZHANG, XING-YUAN WANG, Analysis and improvement of a chaos-based symmetric image encryption scheme using a bit-level permutation, Nonlinear Dynamics 77(3), 2014, pp. 687–698.
  • [2] NANRUN ZHOU, SHUMIN PAN, SHAN CHENG, ZHIHONG ZHOU, Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing, Optics and Laser Technology 82, 2016, pp. 121–133.
  • [3] HAO-RAN LIANG, XIANG-YANG TAO, NAN-RUN ZHOU, Quantum image encryption based on generalized affine transform and logistic map, Quantum Information Processing 15(7), 2016, pp. 2701–2724.
  • [4] NAN RUN ZHOU, TIAN XIANG HUA, LI HUA GONG, DONG JU PEI, QING HONG LIAO, Quantum image encryption based on generalized Arnold transform and double random-phase encoding, Quantum Information Processing 14(4), 2015, pp. 1193–1213.
  • [5] DASGUPTA J., BHATTACHARYA K., CHANDA B., A holistic approach for off-line handwritten cursive word recognition using directional feature based on Arnold transform, Pattern Recognition Letters 79, 2016, pp. 73–79.
  • [6] YING-QIAN ZHANG, XING-YUAN WANG, Spatiotemporal chaos in mixed linear–nonlinear coupled logistic map lattice, Physica A: Statistical Mechanics and its Applications 402, 2014, pp. 104–118.
  • [7] YING-QIAN ZHANG, XING-YUAN WANG, LI-YAN LIU, YI HE, JIA LIU, Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices, Communications in Nonlinear Science and Numerical Simulation 52, 2017, pp. 52–61.
  • [8] YING-QIAN ZHANG, XING-YUAN WANG, A new image encryption algorithm based on non-adjacent coupled map lattices, Applied Soft Computing 26, 2015, pp. 10–20.
  • [9] YING-QIAN ZHANG, XING-YUAN WANG, JIA LIU, ZE-LIN CHI, An image encryption scheme based on the MLNCML system using DNA sequences, Optics and Lasers in Engineering 82, 2016, pp. 95–103.
  • [10] XING-YUAN WANG, PI LI, YING-QIAN ZHANG, LI-YAN LIU, HENGZHI ZHANG, XIUKUN WANG, A novel color image encryption scheme using DNA permutation based on the Lorenz system, Multimedia Tools and Applications 77(5), 2018, pp 6243–6265.
  • [11] KHADIJEH MIRZAEI TALARPOSHTI, MEHRZAD KHAKI JAMEI, A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map, Optics and Lasers in Engineering 81, 2016, pp. 21–34.
  • [12] XIAOWEI LI, CHENGQING LI, IN-KWON LEE, Chaotic image encryption using pseudo-random masks and pixel mapping, Signal Processing 125, 2016, pp. 48–63.
  • [13] ZHIPENG WANG, HONGJUAN WANG, XINGQIANG YANG, PING ZHANG, CHENXIA HOU, YI QIN, Optical image encryption by using diffractive imaging with special constraint in the input plane, Optica Applicata 46(1), 2016, pp. 57–69.
  • [14] WEIMANN S., PEREZ-LEIJA A., LEBUGLE M., KEIL R., TICHY M., GRÄFE M., HEILMANN R., NOLTE S., MOYA-CESSA H., WEIHS G., CHRISTODOULIDES D.N., SZAMEIT A., Implementation of quantum and classical discrete fractional Fourier transforms, Nature Communications 7, 2016, article ID 11027.
  • [15] BHATTA I., SANTHANAM B., A comparative study of commuting matrix approaches for the discrete fractional Fourier transform, 2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE), 2015, pp. 1–6.
  • [16] AZOUG S.E., BOUGUEZEL S., A non-linear preprocessing for opto-digital image encryption using multiple- parameter discrete fractional Fourier transform, Optics Communications 359, 2016, pp. 85–94.
  • [17] NANRUN ZHOU, JIANPING YANG, CHANGFA TAN, SHUMIN PAN, ZHIHONG ZHOU, Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform, Optics Communications 354, 2015, pp. 112–121.
  • [18] SINHA A., SINGH K., Image encryption by using fractional Fourier transform and jigsaw transform in image bit planes, Optical Engineering 44(5), 2005, article ID 057001.
  • [19] ZHENGJUN LIU, AHMAD M.A., SHUTIAN LIU, A discrete fractional angular transform, Optics Communications 281(6), 2008, pp. 1424–1429.
  • [20] LIANSHENG SUI, KUAIKUAI DUAN, JUNLI LIANG, A secure double-image sharing scheme based on Shamir’s three-pass protocol and 2D Sine Logistic modulation map in discrete multiple-parameter fractional angular transform domain, Optics and Lasers in Engineering 80, 2016, pp. 52–62.
  • [21] LIANSHENG SUI, KUAIKUAI DUAN, JUNLI LIANG, Double-image encryption based on discrete multiple-parameter fractional angular transform and two-coupled logistic maps, Optics Communications 343, 2015, pp. 140–149.
  • [22] JING YU, YUAN LI, XINWEN XIE, NANRUN ZHOU, ZHIHONG ZHOU, Image encryption algorithm by using logistic map and discrete fractional angular transform, Optica Applicata 47(1), 2017, pp. 141–155.
  • [23] ARNOLD V.I., AVEZ A., Ergodic Problems of Classical Mechanics, Benjamin, 2015.
  • [24] DYSON F.J., FALK H., Period of a discrete cat mapping, American Mathematical Monthly 99(7), 1992, pp. 603–614.
  • [25] YING-QIAN ZHANG, XING-YUAN WANG, A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice, Information Sciences 273, 2014, pp. 329–351.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25eb2b2d-b5f4-4ec8-b81e-abfa7fa03b5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.