Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with the analysis of critical percolation clusters that have resulted from the numerical simulation of mixtures of various conducting polymers in a dielectric medium. The conducting particles in the electrical percolation problem are modelled following the hard-core/double soft-shell model which considered realistic values of particles dimensions, electrical conductivity and hopping distances. The new formulation of the chemical distance distribution in the percolation clusters is developed and several representative examples using this formulation are presented. In order to verify the fractal nature of the obtained critical percolation clusters the Minkowski-Bouligand dimension formulation was applied. Approximation of obtained results confirms the fractal nature of analysed clusters.
Rocznik
Tom
Strony
59--69
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Institute of Fundamentals of Machinery Design, Silesian University of Technology Gliwice, Poland
Bibliografia
- [1] Flory P.J., Molecular size distribution in three dimensional polymers, J. Am. Chem. Soc. 1941, 63(11), 3083-3090.
- [2] Stockmayer W.H., Theory of molecular size distribution and gel formation in branched-chain polymers, J. Chem. Phys. 1943, 11(2), 45-55.
- [3] Pike G.E., Seager C.H., Percolation and conductivity. A computer study. I, Phys. Rev. B 1974, 10(4), 1421-1434.
- [4] Pike G.E., Seager C.H., Percolation and conductivity. A computer study. II, Phys. Rev. B 1974, 10(4), 1435-1446.
- [5] Wessling B., Volk H., Post-polymerization processing of conductive polymers: a way of converting conductive polymers to conductive materials? Synthetic Met. 1986, 15, 183-193.
- [6] Wessling B., Volk H., Thermoplastic conversion of ‘doped’ polyaniline from the amorphous to a partially crystal state, Synthetic Met. 1986, 16, 127-131.
- [7] Wessling B., Electrical conductivity in heterogeneous polymer systems, [in:] Electronic Properties of Conjugated Polymers, eds. H. Kuzmany, M. Mehring, S. Roth, Springer Ser. Solid State Sci., Springer, New York 1987, 76, 407-412.
- [8] Vysotsky V.V., Roldughin V.I., Aggregate structure and percolation properties of metal-filled polymer films, Colloid Surf. A 1999, 160(2), 171-180.
- [9] Roldughin V.I., Vysotsky V.V., Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity, Prog. Org. Coat. 2000, 39, 81-100.
- [10] Mamunya Y.P., Davydenko V.V., Passis P., Lebedev E.V., Electrical and thermal conductivity of polymers filled with metal powders, Eur. Polym. J. 2002, 38(9), 1887-1897.
- [11] Qiao R., Brinson L.C., Simulation of interphase percolation and gradients in polymer nanocomposites, Compos. Sci. Technol. 2009, 69, 491-499.
- [12] Bauhofer W., Kovacs J.Z., A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol. 2009, 69, 1486-1498.
- [13] Katunin A., Krukiewicz K., Electrical percolation in composites of conducting polymers and dielectrics, J. Polym. Eng. 2015, 35(8), 731-741.
- [14] Brereton T., Hirsch C., Schmidt V., Kroesse D., A critical exponent for shortest-path scaling in continuum percolation, J. Phys. A: Math. Theor. 2014, 47(50), 505003.
- [15] Blavatska V., Fricke N., Janke W., Polymers in disordered environments, Condens. Matter Phys. 2014, 17(3), 1-11.
- [16] Hunt A., Percolation Theory for Flow in Porous Media, Springer, New York 2005.
- [17] Franceschetti M., Meester R., Random Networks for Communication: From Statistical Physics to Information Networks, Cambridge University Press, New York 2007.
- [18] Belashi A., Percolation Modeling in Polymer Nanocomposites, PhD thesis, University of Toledo, Toledo 2011.
- [19] Pelster R., Nimtz G., Wessling B., Mesoscale change transport in polyaniline, J. Phys. II France 1994, 4, 549-553.
- [20] Pelster R., Nimtz G., Wessling B., Fully protonated polyaniline: Hopping transport on a mesoscopic scale, Phys. Rev. B 1994, 49, 12718-12723.
- [21] Angappane S., Srinivasan D., Rangarajan G., Prasad V., Subramanyam S.V., Wessling B., Transport and magneto-transport study on some conducting polyanilines, Physica B 2000, 284-288, 1982-1983.
- [22] Barrau S., Demont P., Perez E., Peigney A., Laurent C., Lacabanne C., Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites, Macromolecules 2003, 36, 9678-9680.
- [23] Ángeles Corres M., Mugica A., Carrasco P.M., Cortazár M.M., Effect of crystallization on morphology-conductivity relationship in polypyrrole/(L-caprolactone) blends, Polymer 2006, 47(19), 6759-6764.
- [24] Reedijk J.A., Martens H.C.F., Brom H.B., Dopant-induced crossover from 1D to 3D charge transport in conjugated polymers, Phys. Rev. Lett. 1999, 83, 3904-3907.
- [25] Bhadra J., Sarkar D., Size variation of polyaniline nanoparticles dispersed in polyvinyl alcohol matrix, Bull. Mater. Sci. 2010, 33(5), 519-523.
- [26] Basavaraja C., Kim N.R., Jo E.A., Pierson R., Huh D.S., Venkataraman A., Transport properties of polypyrrole films doped with sulphonic acids, Bull. Korean Chem. Soc. 2009, 30, 2701-2706.
- [27] Kondawar S.B., Deshpande M.D., Agrawal S.P., Transport properties of conductive polyaniline nanocomposites based on carbon nanotubes, Int. J. Compos. Mater. 2012, 2(3), 32-36.
- [28] Craver C.D., Carraher C.E., Applied Polymer Science: 21st Century, Elsevier Science, Oxford 2000.
- [29] Subramaniam C.K., Kaiser A.B., Gilberd P.W., Liu C.-J., Wessling B., Conductivity and thermopower of blends of polyaniline with insulating polymers (PETG and PMMA), Solid State Commun. 1996, 97(3), 235-238.
- [30] Aylward G., Findlay T., SI Chemical Data, Wiley, New York 1994.
- [31] Yu P.Y., Cardona M., Fundamentals of Semiconductors: Physics and Material Properties, Springer-Verlag, Berlin 2010.
- [32] Voss R.F., The fractal dimension of percolation cluster hulls, J. Phys. A 1984, 17, L373-L377.
- [33] Lukashevich V.N., Lukashevich O.D., Kharii R.I., A model of fractals for cement-based fiber-reinforced pavement base course, Vestnik TSUAB 2013, 1, 178-188.
- [34] Strelniker Y.M., Havlin S., Bunde A., Fractals and percolation, [in:] Encyclopedia of Complexity and Systems Science, ed. R.A. Meyers, Springer-Verlag, New York 2009, 3847-3858.
- [35] Tarasevich Y.Y., Percolation: Theory, Applications, Algorithms, Editoria URSS Press, Moscow 2002 (in Russian).
- [36] Isichenko M.B., Percolation, statistical topography, and transport in random media, Rev. Mod. Phys. 1992, 64(4), 961-1043.
- [37] Havlin S., Ben-Avraham D., Diffusion in disordered media, Adv. Phys. 2002, 51(1), 187-292.
- [38] Nakamura M., Fractal property of two-dimensional continuum percolation clusters, Phys. Rev. A 1986, 34(4), 3356-3361.
- [39] He D., Ekere N.N., Cai L., Two-dimensional percolation and cluster structure of the random packing of binary disks, Phys. Rev. E 2002, 65, 061304.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25ea13b9-50cf-4d60-b175-ea0b1ed53052