PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of Knitting Structure Textiles in Medical Areas

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are many kinds of medical textiles, such as woven textiles, non-woven textiles, braided textiles and knitted textiles. Non-woven medical textiles constitute more than 60% of the total medical textiles used, but are almost disposable ordinary medical textiles. While knitted fabrics forms a small part of the medical textiles, but are greatly applied in high-tech medical textiles, containing artificial blood vessels, hernia patches, cardiac support devices, knitted medical expandable metallic stents and tendon scaffolds. Knitting structures, including weft knitting structure and warp knitting structure. The knitted textiles are popular for their loose structure, greater flexibility, higher porosity, more flexible structure and better forming technology. The present article will introduce some knitting structures and materials applied in the medical textiles in accordance with non-implantable, implantable, extra-corporeal textiles and healthcare and hygiene products.
Rocznik
Strony
181--191
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi 214122, China
  • Key Laboratory of Eco-textiles, Ministry of Education, Ministry of Education, Jiangnan University, Wuxi 214122, China
autor
  • Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi 214122, China
  • International Joint Research Laboratory for Novel Knitting Structural Materials, Jiangnan University, Wuxi 214122, China
  • Key Laboratory of Eco-textiles, Ministry of Education, Ministry of Education, Jiangnan University, Wuxi 214122, China
Bibliografia
  • [1] Czajka, R., Development of medical textile market. Fibres & Textiles in Eastern Europe, 2005. 13(1): p. 3.
  • [2] Momoh, F.U., et al., Development and functional characterization of alginate dressing as potential protein delivery system for wound healing. International Journal of Biological Macromolecules, 2015. 81: p. 137-150.
  • [3] Turner, T., The development of wound management products. Wound: A Compendium of Clinical Research and Practice, 1989. 1(3): p. 155-171.
  • [4] Peršin, Z., et al., The study of plasma’s modification effects in viscose used as an absorbent for wound-relevant fluids. Carbohydrate Polymers, 2013. 97(1): p. 143-151.
  • [5] Angspatt, A., et al., Carboxymethylchitosan, alginate and tulle gauze wound dressings: a comparative study in the treatment of partial-thickness wounds. Asian Biomedicine, 2011. 5(3): p. 413-416.
  • [6] Azad, A.K., et al., Chitosan membrane as a woundhealing dressing: Characterization and clinical application. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2004. 69B(2): p. 216-222.
  • [7] Niekraszewicz, A., Chitosan medical dressings. Fibres & Textiles in Eastern Europe, 2005. 13(6): p. 3.
  • [8] Jayakumar, R., et al., Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 2011. 29(3): p. 322-337.
  • [9] Muzzarelli, R.A.A., Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 2009. 76(2): p. 167-182.
  • [10] Chen, C., et al., Bubble template fabrication of chitosan/ poly(vinyl alcohol) sponges for wound dressing applications. International Journal of Biological Macromolecules, 2013. 62: p. 188-193.
  • [11] Muzzarelli, R.A.A., Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohydrate Polymers, 1993. 20(1): p. 7-16.
  • [12] Liu, Y. and H. Hu, Compression property and air permeability of weft-knitted spacer fabrics. Journal of the Textile Institute, 2011. 102(4): p. 366-372.
  • [13] Anon, 3D warp-knitted textiles - fabrics that fit into a frame. Kettenwirk-Praxis, 2013. 04: p. 31-32.
  • [14] Yang, Y. and H. Hu, Spacer fabric-based exuding wound dressing - Part I: Structural design, fabrication and property evaluation of spacer fabrics. Textile Research Journal, 2016.
  • [15] Yang, Y. and H. Hu, Spacer fabric-based exuding wound dressing - Part II: Comparison with commercial wound dressings. Textile Research Journal, 2016.
  • [16] Liu, Y., et al., Impact compressive behavior of warp-knitted spacer fabrics for protective applications. Textile Research Journal, 2012. 82(8): p. 773-788.
  • [17] Rajan, T.P., G. Ramakrishnan, and P. Kandhavadivu, Permeability and impact properties of warp-knitted spacer fabrics for protective application. Journal of the Textile Institute, 2016. 107(9): p. 1079-1088.
  • [18] Tong, S.-f., et al., Exploring use of warp-knitted spacer fabric as a substitute for the absorbent layer for advanced wound dressing. Textile Research Journal, 2015. 85(12): p. 1258-1268.
  • [19] Nemeno-Guanzon, J.G., et al., Trends in Tissue Engineering for Blood Vessels. Journal of Biomedicine and Biotechnology, 2012. 2012: p. 1-14.
  • [20] Yagi, T., et al., Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta. Journal of Artificial Organs, 2011. 14(2): p. 89-99.
  • [21] Klosterhalfen, B., K. Junge, and U. Klinge, The lightweight and large porous mesh concept for hernia repair. Expert Review of Medical Devices, 2005. 2(1): p. 103-117.
  • [22] Klosterhalfen, B., et al., Polymers in hernia repair - common polyester vs. polypropylene surgical meshes. Journal of Materials Science, 2000. 35(19): p. 4769-4776.
  • [23] Gao, K., et al., Anterior Cruciate Ligament Reconstruction With LARS Artificial Ligament: A Multicenter Study With 3- to 5-Year Follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2010. 26(4): p. 515-523.
  • [24] Cheng, C., S. Ren, and P. Chen, Ligament advanced reinforcement system versus tendon autograft for anterior cruciate ligament reconstruction: a meta-analysis. Orthopedic Journal of China, 2016. 24(20): p. 1868-1875.
  • [25] Li, B., Y. Wang, and C. Qiu, Efficacy of LARS artificial ligament versus tibialis anterior allograft for posterior cruciate ligament reconstruction: a comparative study. Orthopedic Journal of China, 2016. 24(18): p. 1650-1654.
  • [26] Parchi, P.D., et al., Anterior cruciate ligament reconstruction with LARS™ artificial ligament results at a mean follow-up of eight years. International Orthopaedics, 2013. 37(8): p. 1567-1574.
  • [27] Dericks Jr, G., Ligament advanced reinforcement system anterior cruciate ligament reconstruction. Operative Techniques in Sports Medicine, 1995. 3(3): p. 187-205.
  • [28] Hamido, F., et al., The use of the LARS artificial ligament to augment a short or undersized ACL hamstrings tendon graft. The Knee, 2011. 18(6): p. 373-378.
  • [29] Starling, R.C., et al., Sustained Benefits of the CorCap Cardiac Support Device on Left Ventricular Remodeling: Three Year Follow-up Results From the Acorn Clinical Trial. The Annals of Thoracic Surgery, 2007. 84(4): p.1236-1242.
  • [30] Konertz, W.F., et al., Passive containment and reverse remodeling by a novel textile cardiac support device. Circulation, 2001. 104(12): p. I270-I275.
  • [31] Oz, M.C., et al., Global surgical experience with the Acorn cardiac support device. The Journal of Thoracic and Cardiovascular Surgery, 2003. 126(4): p. 983-991.
  • [32] Zullo, M.A., et al., One-Year Follow-up of Tension-free Vaginal Tape (TVT) and Trans-obturator Suburethral Tape from Inside to Outside (TVT-O) for Surgical Treatment of Female Stress Urinary Incontinence: A Prospective Randomised Trial. European Urology, 2007. 51(5): p.1376-1384.
  • [33] Gomelsky, A. and R.R. Dmochowski, Biocompatibility Assessment of Synthetic Sling Materials for Female Stress Urinary Incontinence. The Journal of Urology, 2007. 178(4): p. 1171-1181.
  • [34] Madden, B.P., S. Datta, and N. Charokopos, Experience with ultraflex expandable metallic stents in the management of endobronchial pathology. The Annals of Thoracic Surgery, 2002. 73(3): p. 938-944.
  • [35] Gonfiotti, A., et al., The first tissue-engineered airway transplantation: 5-year follow-up results. The Lancet. 383(9913): p. 238-244.
  • [36] Gaafar, A.H., A.Y. Shaaban, and M.S. Elhadidi, The use of metallic expandable tracheal stents in the management of inoperable malignant tracheal obstruction. European Archives of Oto-Rhino-Laryngology, 2012. 269(1): p. 247-253.
  • [37] Sahoo, S., et al., Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Engineering, 2006. 12(1): p. 91-99.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25e8cd60-3bcf-4372-81df-6973fde9b725
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.