Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents static and dynamic stress analyses of an axial fan blade, which were carried out under real-life centrifugal and aerodynamic loading conditions using the Abaqus software. The location of the crack was identified on the pressure side of the blade at the conjunction between the blade and the blade root. It reveals a high agreement between the predicted location of stress distribution and the real origin of the crack location. Furthermore, a fracture mechanics criterion was adopted to simulate fatigue crack growth. This was performed using a fracture analysis FRANC3D code for three-dimensional problems. As a result, the calculated stress intensity factors (SIFs) were presented for the first steps, and the fatigue life of the fan blade was evaluated using the Forman de Koning model at different stress ratios.
Wydawca
Czasopismo
Rocznik
Strony
61--79
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- School of Engineering, University of Quebec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Canada
autor
- School of Engineering, University of Quebec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Canada
autor
- School of Engineering, University of Quebec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Canada
Bibliografia
- 1. Azapagic A. Developing a framework for sustainable development indicators for the mining and minerals industry. J Clean Prod. 2004;12:639–62.
- 2. Witek L, Wierzbińska M, Poznańska A. Fracture analysis of compressor blade of a helicopter engine. Eng Fail Anal. 2009;5:1616–22.
- 3. Stephens RI, Fatemi A, Stephens RR, Fuchs HO. Metal Fatigue in Engineering. John Wiley & Sons; 2000.
- 4. Chen Z, Bao H, Dai Y, Liu Y. Numerical prediction based on XFEM for mixed-mode crack growth path and fatigue life under cyclic overload. Int J Fatigue. 2022;162:106943.
- 5. Yu Z, Xu X, Guo J, Cai T. Fracture analysis of impeller blade of a locomotive draught-fan. Eng Fail Anal. 2013;27:16–29.
- 6. Zhao Y, Feng J, Zhou Q, Peng X. Blade fracture analysis of a motor cooling fan in a high-speed reciprocating compressor package. Eng Fail Anal. 2018;89:88–99.
- 7. Poursaeidi E, Babaei A, Mohammadi Arhani MR, Arablu M. Effects of natural frequencies on the failure of R1 compressor blades. Eng Fail Anal. 2012;25:304–15.
- 8. Remadi A, Bahloul A, Bouraoui C. Prediction of fatigue crack growth life under variable-amplitude loading using finite element analysis. Comptes Rendus Mécanique. 2019;347:576–87.
- 9. Xie D, Biggers SB. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation. Eng Fract Mech. 2006;73:771–85.
- 10. Russo R, Chen B. Overcoming the cohesive zone limit in composites delamination: modeling with slender structural elements and higher-order adaptive integration. Int J Numer Methods Eng. 2020;121:5511–45.
- 11. Gibert G, Prabel B, Gravouil A, Jacquemoud C. A 3D automatic mesh refinement X-FEM approach for fatigue crack propagation. Finite Elem Anal Des. 2019;157:21–37.
- 12. Riddell WT, Ingraffea AR, Wawrzynek PA. Experimental observations and numerical predictions of three-dimensional fatigue crack propagation. Eng Fract Mech. 1997;58:293–310.
- 13. Poursaeidi E, Bakhtiari H. Fatigue crack growth simulation in a first stage of compressor blade. Eng Fail Anal. 2014;45:314–25.
- 14. Paris P. C; ERDOGAN, F: A critical analysis of crack propagation laws. J Basic Eng. 1963;85:528–34.
- 15. Forman RG. Study of fatigue crack initiation from flaws using fracture mechanics theory. Eng Fract Mech. 1972;4:333–45.
- 16. Mangardich D, Abrari F, Fawaz Z. Modeling crack growth of an aircraft engine high pressure compressor blade under combined HCF and LCF loading. Eng Fract Mech. 2019;214:474–86.
- 17. Malipatil SG, Nagarajappa N, Majila AN, Chandru Fernando D, Bojja R, Jagannathan N, et al. A study on the fatigue crack growth behaviour of GTM718 nickel based super alloy under cold-TURBISTAN spectrum loads. Theor Appl Fract Mech. 2022;120:103386.
- 18. Malipatil SG, Majila AN, Chandru Fernando D, Manjuprasad M, Manjunatha CM. Fatigue crack growth behaviour of a nickel base super alloy GTM720 under cold-TURBISTAN spectrum load sequence. Theor Appl Fract Mech. 2021;112:102913.
- 19. Ahmad A. Mechanical Vibrations Fifth Edition. [cited 2023 Jan 4]; Available from: https://www.academia.edu/44772271/Mechanical_Vibrations_Fifth_Edition.
- 20. Layachi M, Khechai A, Ghrieb A, Layachi S. Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model. Adv Mater Sci. 2023;23:32–57.
- 21. Rao: Mechanical vibrations laboratory manual - Google Scholar [Internet]. [cited 2022 Sep 6]. Available from: https://scholar.google.com/scholar_lookup?title =Mechanical%20Vibrations&publication_year=2010&author=S.S.%20Rao.
- 22. Khan S, Alderliesten R, Schijve J, Benedictus R. On the fatigue crack growth prediction under variable amplitude loading. 2007.
- 23. Paris P, Erdogan F. A Critical Analysis of Crack Propagation Laws. J Basic Eng. 1963;85:528–33.
- 24. Beden S, Abdullah S, Ariffin AK. Review of Fatigue Crack Propagation Models for Metallic Components. Eur J Sci Res. 2009;28.
- 25. NASGRO® Software Overview [Internet]. Southwest Res. Inst. 2017 [cited 2023 Jan 4]. Available from: https://www.swri.org/nasgro-software-overview.
- 26. Mettu SR, Shivakumar V, Forman RG, McMahon JJ, Johnson N, Newman JC, et al. NASGRO 3.0 - A software for analyzing aging aircraft.
- 27. Branco R, Antunes FV, Costa JD, Yang FP, Kuang ZB. Determination of the Paris law constants in round bars from beach marks on fracture surfaces. Eng Fract Mech. 2012;96:96–106.
- 28. Liu H, Yang X, Li S, Shi D. A numerical approach to simulate 3D crack propagation in turbine blades. Int J Mech Sci. 2020;171:105408.
- 29. Witek L. Experimental Crack Propagation Analysis of the Compressor Blades Working in High Cycle Fatigue Condition. Fatigue Aircr Struct. 2009;2009:195–204.
- 30. Kim J-H, Paulino GH. On Fracture Criteria for Mixed-Mode Crack Propagation in Functionally Graded Materials. Mech Adv Mater Struct. 2007;14:227–44.
- 31. Palaniswamy K, Knauss WG. Propagation of a crack under general, in-plane tension. Int J Fract Mech. 1972;8:114–7.
- 32. Sih GC. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract. 1974;10:305–21.
- 33. Erdogan F, Sih GC. On the Crack Extension in Plates Under Plane Loading and Transverse Shear. J Basic Eng. 1963;85:519–25.
- 34. Anderson TL. Fracture Mechanics: Fundamentals and Applications, Fourth Edition. 4th ed. Boca Raton: CRC Press; 2017.
- 35. Xiaotong Y, Robuschi S, Fernandez I, Lundgren K. Numerical assessment of bond-slip relationships for naturally corroded plain reinforcement bars in concrete beams. Eng Struct. 2021;239:112309.
- 36. Hou J, Lv J, Ricoeur A, Hu Y, Zuo H, Chen Y, et al. The M-integral in fracture and damage mechanics: A review of developments and applications. Eng Fract Mech. 2022;273:108741.
- 37. Said J, Fouvry S, Cailletaud G, Yang C, Hafid F. Shear driven crack arrest investigation under compressive state: Prediction of fretting fatigue failure of aluminium strands. Int J Fatigue. 2020;136:105589.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25e899c7-c8a0-418e-9450-5c0253ef7663