PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure characterization by means of X-ray micro-CT and nanoindentation measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to present an example of the material microstructure characterization with the use of X-ray micro-CT and nanoindentation measurements. Firstly, the current scope of application of the aforementioned techniques is provided within different fields of science. Then, background of each of the methods is presented. The methodology of X-ray micro-CT is described with the emphasis on the Beer’s law formulation. In addition, the basics of the nanoindentation technique are outlined and major formulas for the hardness and Young’s modulus calculation are given. Finally, example results for a concrete sample are presented. The microstructure of the selected material is firstly characterized in terms of geometry using the results from the microtomograhy measurements, e.g., porosity and attenuation profiles, pore and aggregate size distribution, shape factor of pores, etc. Next, the results of the nanoindentation tests are provided, namely the hardness and Young’s modulus versus the height of the sample. The influence of the number of tests and statistical analysis on the final results is underlined.
Słowa kluczowe
Wydawca
Rocznik
Strony
75--84
Opis fizyczny
Bibliogr. 17 poz., tab., rys.
Twórcy
  • Wrocław University of Technology, Faculty of Civil Engineering, Institute of Geotechnics and Hydrotechnics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Technology, Faculty of Civil Engineering, Institute of Geotechnics and Hydrotechnics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Technology, Faculty of Civil Engineering, Institute of Geotechnics and Hydrotechnics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] HENRY M., DARMA I.S., SUGIYAMA T., Analysis of the effect of heating and re-curing on the microstructure of highstrength concrete using X-ray CT, Construction and Building Materials, 2014, Vol. 67, 37–46.
  • [2] REN W., YANG Z., SHARMA R., ZHANG C., WITHERS P.J., Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete, Engineering Fracture Mechanics, 2015, Vol. 133, 24–39.
  • [3] BOSSA N., CHAURAND P., VICENTE J., BORSCHNECK D., LEVARD C., AGUERRE-CHARIOL O., ROSE J., Micro- and nano- X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste, Cement and Concrete Research, 2015, Vol. 67, 138–147.
  • [4] KORATA L., DUCMANA V., LEGATA A., MIRTIC B., Characterization of the pore-forming process in lightweight aggregate based on silica sludge by means of X-ray microtomography (micro-CT) and mercury intrusion porosimetry (MIP), Ceramics International, 2013, Vol. 39, 6997–7005.
  • [5] MUNKHOLM L.J., HECK R.J., DEEN B., Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability, Geoderma, 2012, Vol. 181–182, 22–29.
  • [6] LIU T., ZHANG X., LI Z., CHEN Z., Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory, Construction and Building Materials, 2014, Vol. 68, 587–598.
  • [7] STEPPE K., CNUDDE V., GIRARD C., LEMEUR R., CNUDDE J.P., JACOBS P., Use of X-ray computed microtomography for noninvasive determination of wood anatomical characteristics, Journal of Structural Biology, 2004, Vol. 148, 11–21.
  • [8] CONSTANTINIDES G., RAVI CHANDRAN K.S., ULM F.-J., VAN VLIET K.J., Grid indentation analysis of composite microstructure and mechanics: Principles and validation, Materials Science and Engineering, 2006, Vol. 430, 189–202.
  • [9] SORELLI L., CONSTANTINIDES G., ULM F.-J., TOUTLEMONDE F., The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques, Cement and Concrete Research, 2008, Vol. 38, 1447–1456.
  • [10] ZHU W., HUGHES J.J., BICANIC N., PEARCE C.J., Nanoindentation mapping of mechanical properties of cement paste and natural rocks, Materials Characterization, 2007, Vol. 58, 1189–1198.
  • [11] ZADPOOR A.A., Nanomechanical characterization of heterogeneous and hierarchical biomaterials and tissues using nanoindentation: The role of finite mixture models, Materials Science and Engineering C, 2015, Vol. 48, 150–157.
  • [12] DÍEZ-PASCUAL A.M., GÓMEZ-FATOU M.A., ANIA F., FLORES A., Nanoindentation in polymer nanocomposites, Progress in Materials Science, 2015, Vol. 67, 1–94.
  • [13] STOCK S.R., MicroComputed tomography: methodology and applications, Boca Raton: CRC Press, 2009.
  • [14] EPSTEIN C.L., Introduction to mathematics of medical imaging, SIAM, Philadelphia, 2003.
  • [15] DOERNER M.F., NIX W.D., A method for interpreting the data from depth-sensing indentation instruments, Journal of Material Research, 1986, Vol. 1(4), 601–609.
  • [16] OLIVER W.C., PHARR G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Material Research, 1992, Vol. 7(6), 1564–1583.
  • [17] FISCHER-CRIPPS A., Nanoindentation, Springer, New York, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25e87f03-2360-4e2c-a999-21e2f7a8f019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.