Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper introduces an innovative design for the super-twisting sliding mode control (ST-SMC) strategy, which is applied for the first time to a three-phase shunt active power filter (SAPF) utilizing a flying capacitor multicellular inverter (FCMI). The objective of the proposed ST-SMC is to enhance control over filter currents, flying capacitor voltages and the DC bus voltage. Simulation results, under balanced and unbalanced nonlinear load conditions, demonstrated exceptional capabilities in harmonic reduction while maintaining robust dynamic response characteristics. Additionally, it showed remarkable performance in tracking both filter currents, DC voltage, and flying capacitor voltages.
Czasopismo
Rocznik
Tom
Strony
541--566
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr., wz.
Twórcy
autor
- Process Control Laboratory (PCL), National Polytechnic School BP. 182 El-Harrach, 16200 Algiers, Algeria
autor
- Process Control Laboratory (PCL), National Polytechnic School BP. 182 El-Harrach, 16200 Algiers, Algeria
autor
- University of Hassiba Ben Bouali 02000 Chlef, Algeria
Bibliografia
- [1] Kouzou A., Abu Rub H., Mahmoudi M. O., Boucherit MS., Kennel R., Four wire Shunt Active Power Filter based on four-leg inverter, International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Istanbul, Turkey, vol. 8, no. 10, pp. 508–513 (2011), DOI: 10.1109/ACEMP.2011.6490651.
- [2] Hoon Y., Radzi M. A. M., Hassan M. K., Mailah N., Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation, Energies, vol. 10, no. 12, 2038 (2017), DOI: 10.3390/en10122038.
- [3] Grugel P., Mucko J., Selected static characteristics of a parallel active power filter with feedback from the supply voltage, Archives of Electrical Engineering, vol. 73, no. 1, pp. 37–50 (2024), DOI: 10.24425/aee.2024.148855.
- [4] Thuyen C. M., Adaptive current control method for hybrid active power filters, Journal of Electrical Engineering, vol. 67, no. 5, pp. 343–350 (2016), DOI: 10.1515/jee-2016-0049.
- [5] Jafrodi S. T., Ghanbari M., Mahmoudian M., Najafi A., Rodrigues E.M.G., Pouresmaeil E., A Novel Control Strategy to Active Power Filter with Load Voltage Support Considering Current Harmonic Compensation, Applied Sciences, vol. 10, 1164 (2020), DOI: 10.3390/app10051664.
- [6] El-Hosainy A., Hamed H. A., Azazi H. Z., Elkholy., A Review of Multilevel Inverter Topologies, Control Techniques, and Applications, Nineteenth International Middle East Power Systems Conference (MEPCON), pp. 1265–1275 (2017), DOI: 10.1109/MEPCON.2017.8301344.
- [7] Demirdelen T., Inci M., Tumay M., Comparison of Three, Five and Seven Levels Diode Clamped Multilevel Inverter Topologies based Shunt Hybrid Active Power Filter for Harmonics Compensation with Equal DC Link, International Journal of Applied Mathematics, Electronics and Computers, vol. 4, no. 1, pp. 24–30 (2016), DOI: 10.18100/ijamec.83268.
- [8] Defay F., Llor A. M., Fadel M., Direct Control Strategy for a Four-Level Three- Phase Flying-Capacitor Inverter, IEEE Transactions on Industrial Electronics, vol. 75, no. 7, pp. 2240–2248 (2010), DOI: 10.1109/TIE.2009.2039457.
- [9] Rouabah B., Toubakh H., Djemai M., Ben Brahim L., Ghandour R., Fault Diagnosis Based Machine Learning and Fault Tolerant Control of Multicellular Converter Used in Photovoltaic Water Pumping System, Engineering, Environmental Science, vol. 11 (2023), DOI: 10.1109/access.2023.3266522.
- [10] Antoniewicz K., Rafal K., Model predictive current control method for four-leg three-level converter operating as shunt active power filter and grid connected inverter, Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 65, no. 5, pp. 601–607 (2017), DOI: 10.1515/bpasts-2017-0065.
- [11] Rouabah B., Rahmani L., Toubakh H., Duviella E., Adaptive and Exact Linearization Control of Multicellular Power Converter Based on Shunt Active Power Filter, Journal of Control Automation and Electrical Systems, vol. 30, no. 2, pp. 1019–1029 (2017), DOI: 10.1007/s40313-019-00510-w.
- [12] Bouhafs A., Rouabah B., Kafi M. R., Louzene L., Self-adaptive fault-tolerant control strategy of shunt active power filter based on multicellular converter, Diagnostyka, vol. 24, no. 4 (2023), DOI: 10.29354/diag/175006.
- [13] Djerboub K., Allaoui T., Champenois G., Denai M., Habib C., Article Swarm Optimization Trained Artificial Neural Network to Control Shunt Active Power Filter Based on Multilevel Flying Capacitor Inverter, European Journal of Electrical Engineering, vol. 22, no. 3, pp. 199–207 (2020), DOI: 10.18280/ejee.220301.
- [14] Othman S., Alali M. A., Sbita L., Barbot J. P., Ghanes M., Modeling and Control Design Based on Petri Nets Tool for a Serial Three-Phase Five-Level Multicellular Inverter Used as a Shunt Active Power Filter, Energies, vol. 17, pp. 5335 (2021), DOI: 10.3390/en14175335.
- [15] Taghzaoui C., Abouloifa A., Tighazouane B., Elallali A., Lachkar I., Mchaouar Y., Giri F., Advanced control of single phase Shunt Active Power Filter based on Flying Capacitor converter, IFAC Papers Online, vol. 55, no. 12, pp. 55–60 (2022), DOI: 10.1016/j.ifacol.2022.07.288.
- [16] Cortajarena J. A., Barambones O., Alkorta P., Cortajarena J., Sliding mode control of an active power filter with photovoltaic maximum power tracking, Electrical Power and Energy Systems, vol. 110, pp. 747–758 (2019), DOI: 10.1016/j.ijepes.2019.03.070.
- [17] Cibiraj N., Aratharajan M. V., Chattering reduction in sliding mode control of quadcopters using neural networks, VIT University, Chennai Campus, 1st International Conference on Power Engineering, Computing and Control, Energy Procedia, vol. 117, pp. 885–892 (2017), DOI: 10.1016/j.egypro.2017.05.207.
- [18] Furat M., Eker I., Chattering eliminated adaptive sliding-mode control: an experimental comparison study, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 2, pp. 605–620 (2016), DOI: 10.3906/elk-1309-137.
- [19] Djilali L., Sanchez E. N., Belkheiri M., First and High Order Sliding Mode Control of a DFIG-Based Wind Turbine, Electric Power Components and Systems, vol. 48, pp. 105–116 (2020), DOI: 10.1080/15325008.2020.1758836.
- [20] Benbouhenni H., Bizon N., Colak I., Thounthong P., Takorabet N., Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based Multi-Rotor Wind Turbine System, Sustainability, vol. 14, no. 9, pp. 5014 (2022), DOI: 10.3390/su14095014.
- [21] Maharof M., Jamaludin Z., Mohammad S., Rashid A., Ahmed S., Abdullah L., Super-twisting sliding mode controller for precise ball screw driven xy position milling table, Journal of Advanced Manufacturing Technology, vol. 18, no. 3 (2024).
- [22] Din S. U., Rehman F. U., Khan Q., Smooth super-twisting sliding mode control for the class of underactuated systems, PLOS One, vol. 13, no. 10, e0203667 (2018), DOI: 10.1371/journal.pone.0203667.
- [23] Bey H., Krim F., Gherouat O., FPGA-Based Hardware in the Loop of Optimized Synergetic Controller for Active Power Filter, International Transactions on Electrical Energy Systems, vol. 1 (2023), DOI: 10.1155/2023/5810353.
- [24] Cortajarena J. A., Barambones O., Alkorta P., Cortajarena J., Sliding mode control of an active power filter with photovoltaic maximum power tracking, Electrical Power and Energy Systems, vol. 110, pp. 747–758 (2019), DOI: 10.1016/j.ijepes.2019.03.070.
- [25] Mahboub M. A., Roubah B., Kafi M. R., Toubakh H., Health management using fault detection and fault tolerant control of Multicellular Converter applied in move electric aircraft system, Diagnostyka, vol. 3, no. 2, pp. 2449–5220 (2022), DOI: 10.29354/diag/151039.
- [26] Imam A. A., Kumar R.S., Al-Turki Y. A., Modeling and Simulation of a PI Controlled Shunt Active Power Filter for Power Quality Enhancement Based on P-Q Theory, Electronics, vol. 9, no. 4, 637 (2020), DOI: 10.3390/electronics9040637.
- [27] Ramirez J., Castro A., Zuniga P., Alanis A. Y., High Order Sliding Mode Control for Shunt Active Power Filter, IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, pp. 26–50 (2016), DOI: 10.1109/ROPEC.2015.7395111.
- [28] Ghias M. Y. M., Pou J., Ciobotaru M., Agelidis V. G., Voltage-Balancing Method Using Phase-Shifted PWM for the Flying Capacitor Multilevel Converter, IEEE Transactions on power electronics, vol. 29, no. 9, pp. 4521–4531 (2014), DOI: 10.1109/TIE.2014.2320216.
- [29] Hemici K., Mahmoudi M. O., Bokhtache A. A., Zegaoui A., Aillerie M., Three-phases Flying-Capacitor Multilevel Inverter with Proportional Natural PWM Control, Energy Procedia, vol. 74, pp. 1061–1070 (2015), DOI: 10.1016/j.egypro.2015.07.744.
- [30] Farhi S. E., Sakri D., Goléa N., High-performance induction motor drive based on adaptive super-twisting sliding mode control approach, Archives of Electrical Engineering, vol. 71, no. 1, pp. 245–263 (2022), DOI: 10.24425/aee.2022.140208.
- [31] Feng Z., Fei J., Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope, PLoS ONE, vol. 13, no. 1 (2018), DOI: 10.1371/journal.pone.0189457.
- [32] Belabbas B., Allaoui T., Tadjine M., Denai M., Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator, International Journal of System Assurance Engineering and Management, vol. 10, pp. 1555–1566 (2019), DOI: 10.1007/s13198-019-00905-7.
- [33] Ouchen S., Benbouzid M., Blaabjerg F., Betka A., Steinhart H., Direct Power Control of Shunt Active Power Filter using Space Vector Modulation based on Super Twisting Sliding Mode Control, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 3, pp. 3243–3253 (2021), DOI: 10.1109/JESTPE.2020.3007900.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25e679c8-0084-4ee5-bdda-022908f63bc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.