PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving separation efficiency of 6-1 mm coal by introducing vibration energy to dense medium gas-solid fluidized bed

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of the vibration energy on the fluidization quality and separation performance of dense medium gas-solid fluidized bed were investigated experimentally. The magnetite powder with a wide size range of 0.3-0.074 mm was utilized as the basic medium solids. 6-1 mm fine coal sample from Yongcheng (China) was used to perform the separation experiments. The results indicate that the vibration amplitude A and superficial gas velocity U are greatly significant to the fluidization stability and the density distribution uniformity. Comparing with the bed without vibration, the optimal SP and Sρ values of 0.034 kPa and 0.018 g/cm3 are acquired in vibration bed with the operating factors of A = 1 mm, U = 1.8Umf, f = 15 Hz and Hs = 150 mm. The coal ash content was reduced from 27.84% to 9.50% at a separating density of 1.68 g/cm3 with a probable error E value of 0.505. The separation efficiency of 6-1mm fine coal is effectively improved by introducing vibration energy to dense medium gas-solid fluidized bed. The technology provides a novel approach to achieve high-efficiency separation of 6-1 mm fine coal in the arid and water-shortage areas.
Rocznik
Strony
95--108
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
Bibliografia
  • 1. BROZEK M., MLYNARCZYKOWSKA A., 2013. An analysis of effect of particle size on batch floatation of coal. Physicochemical Problems of Mineral Processing, 49(1), 341–356.
  • 2. CHEN Q.R., YANG Y., 2003. Development of dry beneficiation of coal in China. Coal Preparation, 23(1-2), 3-12.
  • 3. HE J.F., 2012. Numerical simulation of multiphase fluid dynamic in air dense medium fluidized bed based on Euler-Euler model. PhD Thesis: China University of Mining and Technology, Xuzhou, China. (In Chinese)
  • 4. HE J.F., HE Y.Q., ZHAO Y.M., DUAN C.L., YE C.L., 2012. Numerical simulation of the pulsing air separation field based on CFD. International Journal of Mining Science and Technology, 22(2), 201-207.
  • 5. HE J.F., ZHAO Y.M., HE Y.Q., LUO Z.F., DUAN C.L., 2013b.Fluidization characteristics of the dense Gas-solid fluidized bed separator based on the Mixed-medium solids of magnetite and paigeite powder. International Journal of Coal Preparation and Utilization, 33 (5), 225-241.
  • 6. HE J.F., ZHAO Y.M., HE Y.Q., LUO Z.F., DUAN C.L., 2013c. Separation performance of raw coal from South Africa using the dense gas-solid fluidized bed beneficiation technique. Journal of The Southern African Institute of Mining and Metallurgy, 113 (7), 575-582.
  • 7. HE J.F., ZHAO Y.M., HE Y.Q., LUO Z.F., DUAN C.L., 2014. Force characteristic of the large coal particle moving in a dense medium gas-solid fluidized bed. Powder Technology, 254, 548-555.
  • 8. HE J.F., ZHAO Y.M., HE Y.Q., WALZEL P., SCHALDACH G., DUAN C.L., 2013a. Force measurement and calculation of the large immersed particle in dense gas-solid fluidized bed. Powder Technology, 241, 204-210.
  • 9. HE J.F., ZHAO Y.M., LUO Z.F., HE Y.Q., DUAN C.L., 2013d. Numerical simulation and experimental verification of bubble size distribution in an air dense medium fluidized bed. International Journal of Mining Science and Technology, 23 (3) ,387-393.
  • 10. LUO Z.F, ZHAO Y.M., 2002. Beneficiation Theory of Fluidization. China University of Mining and Technology Press, Xuzhou, China. (In Chinese)
  • 11. LUO Z.F, ZHAO Y.M., CHEN Q.R., FAN M.M., TAO X.X., 2002. Separation characteristics for fine coal of the magnetically fluidized bed. Fuel Processing and Technology, 79(1), 63-69.
  • 12. LUO Z.F., CHEN Q.R., 2001. Dry beneficiation technology of coal with an air dense medium fluidized bed. International Journal of Mineral Processing, 63, 167-175.
  • 13. LUO Z.F., CHEN Q.R., 2001. Effect of fine coal accumulation on dense phase fluidized bed performance. International Journal of Mineral Processing, 63(2), 217-224.
  • 14. LUO Z.F., FAN M.M., ZHAO Y.M., TAO X.X., CHEN Q.R., CHEN Z.Q., 2008. Density-dependent separation of dry fine coal in a vibrated fluidized bed. Powder Technology, 187 (2) , 119-123.
  • 15. MACPHERSON S.A., IVESON S.M., GALVIN K.P., 2010. Density based separations in the Reflux Classifier with an air-sand dense-medium and vibration. Minerals Engineering, 23, 74-82.
  • 16. NAKHAEI F., IRANNAJAD M., 2013. Prediction of on-line froth depth measurement errors in industrial flotation columns: a promising tool for automatic control. Physicochemical Problems of Mineral Processing, 49(2), 757–768.
  • 17. PRASHANT D., XU Z., SZYMANSKI J., GUPTA R., BODDEZ J., 2010. Dry cleaning of coal by a laboratory continuous Air Dense Medium Fluidized Bed separator. 2010 International Coal Preparation Congress, Lexington, America.
  • 18. SAHU A.K., TRIPATHY A., BISWAL S.K., PARIDA A., 2011. Stability study of an air dense medium fluidized bed separator for beneficiation of high-ash Indian coal. International Journal of Coal Preparation and Utilization, 31 (3-4), 127-148.
  • 19. SAMPAIO C.H., ALIAGA W., PACHECO E.T., PETTER E., WOTRUBA H.,2008. Coal beneficiation of Candiota mine by dry jigging. Fuel Processing Technology, 89(2),198-202.
  • 20. SVOBODA J., COETZEE C., CAMPBELL Q.P., 1998. Experimental investigation into the application of a magnetic cyclone for dense medium separation. Minerals Engineering, 11(6), 501-509.
  • 21. TAKANA Z., SATO H., KAWAI M., OKADA K., TAKAHASHI T, 1996. Dry Coal Cleaning Process for High-quality Coal. Journal of chemical engineering of Japan, 29(2), 257–263.
  • 22. WEITKAMPER L., WOTRUBA H., SAMPAIO C.H., 2010. Effective dry density beneficiation of fine coal using a new developed fluidized bed separator. 2010 International Coal Preparation Congress, Lexington, America.
  • 23. ZHAO Y.M., LUO Z.F., CHEN Q.R., 2004. Fundamental and practical developments of dry coal cleaning in China: a Review. Coal Preparation Society of America Journal, 3 (3), 14-18.
  • 24. ZHAO Y.M., TANG L.G., LUO Z.F., LIANG C.C., XING H.B., DUAN C.L., SONG S.L., 2012. Fluidization characteristics of a fine magnetite powder fluidized bed for density-based dry separation of coal. Separation Science and Technology , 47 (16), 2256-2261.
  • 25. ZOU W.J., CAO Y.J., ZHANG Z.J., LIU J.T., 2013. Coal petrology characteristics of middlings from Qianjiaying fat coal mine. International Journal of Mining Science and Technology, 23 (5) ,777-782.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25e1222c-c5df-4ffa-932d-63916022c01f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.