PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential of electrocoagulation technology for the treatment of tannery industrial effluents: A brief review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
In this new era, we are facing a major problem regarding wastewater in the environment, which has an adverse effect on human life. Wastewater from tanning industries is one of the major contributors to the pollution in aquatic systems. Tannery industries have always contributed to the world’s economy and trade despite facing criticism due to environmental pollution. Tanning effluent consists of organic, inorganic (chromium, nitrogenous compounds), and a large amount of solid content like TDS, TSS, TVS. To overcome these significant challenges, there have been few advancements related to tannery wastewater treatment. This article aims to provide a brief review on electrocaogulation based treatment technologies for eliminating the impurities from tannery wastewater. This review consists of the background with characteristics of tannery wastewater, the alternatives for treating the tannery effluent over the years along. A detailed description of the advanced technologies based on electrocoagulations is implemented to overcome the drawbacks of the existing methods.
Rocznik
Strony
217–--222
Opis fizyczny
Bibliogr. 30 poz., tab.
Twórcy
  • Motilal Nehru National Institute of Technology (MNNIT), Chemical Engineering Department, Allahabad – 211004, India
autor
  • Motilal Nehru National Institute of Technology (MNNIT), Chemical Engineering Department, Allahabad – 211004, India
  • Motilal Nehru National Institute of Technology (MNNIT), Chemical Engineering Department, Allahabad – 211004, India
autor
  • Motilal Nehru National Institute of Technology (MNNIT), Chemical Engineering Department, Allahabad – 211004, India
Bibliografia
  • 1. Ait Ouaissa Y., Chabani M., Amrane A., Bensmaili A., 2012. Integration of electro coagulation and adsorption for the treatment of tannery wastewater – The case of an Algerian factory, Rouiba. Procedia Engineering, 33, 98–101. DOI: 10.1016/j.proeng.2012.01.1181.
  • 2. Asfaha Y.G., Tekile A.K., Zewge F., 2021. Hybrid process of electrocoagulation and electrooxidation system for wastewater treatment: A review. Cleaner Eng. Technol., 4, 100261. DOI: 10.1016/J.CLET.2021.100261.
  • 3. Ben-Sasson M., Zidon Y., Calvo R., Adin A., 2013. Enhanced removal of natural organic matter by hybrid process of electrocoagulation and dead-end microfiltration. Chem. Eng. J., 232, 338–345. DOI: 10.1016/J.CEJ.2013.07.101.
  • 4. Borba F.H., Seibert D., Pellenz L., Espinoza-Quińones F.R., Borba C.E., Módenes A.N., Bergamasco R., 2018. Desirability function applied to the optimization of the Photoperoxi-Electrocoagulation process conditions in the treatment of tannery industrial wastewater. J. Water Process. Eng., 23, 207–216. DOI: 10.1016/j.jwpe.2018.04.006.
  • 5. Chellam S., Sari M.A., 2016. Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control. J. Hazard. Mater., 304, 490–501. DOI: 10.1016/J.JHAZMAT.2015.10.054.
  • 6. Chen F., Zeng S., Luo Z., Ma J., Zhu Q., Zhang S., 2020. A novel MBBR–MFC integrated system for high-strength pulp/paper wastewater treatment and bioelectricity generation. Sep. Sci. Technol., 55, 2490–2499. DOI: 10.1080/01496395.2019.1641519.
  • 7. Cotillas S., Llanos J., Cańizares P., Mateo S., Rodrigo M.A., 2013. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. Water Res., 47, 1741–1750. DOI: 10.1016/j.watres.2012.12.029.
  • 8. Deghles A., Kurt U., 2016. Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chem. Eng. Process., 104, 43–50. DOI: 10.1016/j.cep.2016.02.009.
  • 9. Deveci E.Ü., Akarsu C., Gönen Ç., Özay Y., 2019. Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective. Process Biochem., 84, 124–133. DOI: 10.1016/j.procbio.2019.06.016.
  • 10. Garcia-Segura S., Maesia M., Eiband S.G., Vieira J., Melo D., Martínez-Huitle C.A., 2017. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. J. Electroanal. Chem., 801, 267–299. DOI: 10.1016/j.jelechem.2017.07.047.
  • 11. Hakizimana J.N., Gourich B., Chafi M., Stiriba Y., Vial C., Drogui P., Naja J., 2017. Electrocoagulation process in water treatment: A review of electrocoagulationmodeling approaches. Desalination, 404, 1–21. DOI: 10.1016/j.desal.2016.10.011.
  • 12. Jaafarzadeh N., Omidinasab M., Ghanbari F., 2016. Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater. Process Saf. Environ. Prot., 102, 462–472. DOI:10.1016/j.psep.2016.04.019.
  • 13. Kandasamy S., Manickam N., Dhandapani B., 2020. Studies on generation of bio-energy from tannery effluent using MFC. AIP Conf. Proc., 2225, 070001. DOI: 10.1063/5.0005526.
  • 14. Karthikeyan S., Boopathy R., Sekaran G., 2015. In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater. J. Colloid Interface Sci., 448, 163–174. DOI: 10.1016/j.jcis.2015.01.066.
  • 15. Korpe S., Bethi B., Sonawane S.H., Jayakumar K.V., 2019. Tannery wastewater treatm sent by cavitation combined with advanced oxidation process (AOP). Ultrason. Sonochem., 59, 104723. DOI: 10.1016/j.ultsonch.2019.104723.
  • 16. Manenti D.R., Módenes A.N., Soares P.A., Espinoza-quińones F.R., Boaventura R.A.R., Bergamasco R., Vilar V.J.P., 2014. Assessment of a multistage system based on electrocoagulation , solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chem. Eng. J., 252, 120–130. DOI: 10.1016/j.cej.2014. 04.096.
  • 17. Módenes A.N., Espinoza-Quińones F.R., Borba F.H., Manenti D.R., 2012. Performance evaluation of an integrated photo-Fenton – Electrocoagulation process applied to pollutant removal from tannery effluent in batch system. Chem. Eng. J., 197, 1–9. DOI: 10.1016/J.CEJ.2012.05.015.
  • 18. Moradi M., Moussavi G., 2019. Enhanced treatment of tannery wastewater using the electrocoagulation proces combined with UVC/VUV photoreactor: Parametric and mechanistic evaluation. Chem. Eng. J., 358, 1038–1046. DOI: 10.1016/j.cej.2018.10.069.
  • 19. Moradi M., Vasseghian Y., Arabzade H., Khaneghah M., 2021. Various wastewaters treatment by sono-electrocoagulation process: A comprehensive review of operational parameters and future outlook. Chemosphere, 263, 128314. DOI: 10.1016/j.chemosphere.2020.128314.
  • 20. Moussa D.T., El-Naas M.H., Nasser M., Al-Marri M.J., 2017. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manage., 186, 24–41. DOI: 10.1016/j.jenvman.2016.10.032.
  • 21. Mousset E., Trellu C., Olvera-Vargas H., Pechaud Y., Fourcade F., Oturan M.A., 2021. Electrochemical technologies coupled with biological treatments. Curr Opin Electrochem, 26, 100668. DOI: 10.1016/j.coelec.2020.100668.
  • 22. Munoz-Cupa C., Hu Y., Xu C., Bassi A., 2021. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci. Total Environ., 754, 142429. DOI: 10.1016/j.scitotenv.2020.142429.
  • 23. Parde D., Patwa A., Shukla A., Vijay R., Killedar D.J., Kumar R., 2021. A review of constructed wetland on type,treatment and technology of wastewater. Environ. Technol. Innov., 21, 101261. DOI: 10.1016/J.ETI.2020.101261.
  • 24. Raschitor A., Fernandez C.M., Cretescu I., Rodrigo M.A., Cańizares P., 2014. Sono-electrocoagulation of wastewater polluted with Rhodamine 6G. Sep. Purif. Technol., 135, 110–116. DOI: 10.1016/j.seppur.2014.08.003.
  • 25. Rekhate C.V., Srivastava J.K., 2020. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. Chem. Eng. J. Adv., 3, 100031. DOI: 10.1016/j.ceja.2020.100031.
  • 26. Selvaraj H., Aravind P., George H.S., Sundaram M., 2020. Removal of sulfide and recycling of recovered product from tannery lime wastewater using photoassisted-electrochemical oxidation process. J. Ind. Eng. Chem., 83, 164–172. DOI: 10.1016/j.jiec.2019.11.024.
  • 27. Sivagami K., Sakthivel K.P., Nambi I.M., 2018. Advanced oxidation processes for the treatment of tannery wastewater. J. Environ. Chem. Eng., 6, 3656–3663. DOI: 10.1016/j.jece.2017.06.004.
  • 28. Vasudevan S., 2014. An efficient removal of phenol from water by peroxi-electrocoagulation processes. J. Water Process. Eng., 2, 53–57. DOI: 10.1016/j.jwpe.2014.05.002.
  • 29. Younas F., Niazi N.K., Bibi I., Afzal M., Hussain K., Shahid M., Aslam Z., Bashir S., Hussain M.M., Bundschuh J., 2022. Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. J. Hazard. Mater., 422, 126926. DOI: 10.1016/j.jhazmat.2021.126926.
  • 30. Yusif B.B., Bichi K.A., Oyekunle O.A., Girei A.I., Garba P.Y., Garba F.H., 2016. A review of tannery effluent treatment. Inter. J. Appl. Sci. Math. Theory, 2(3), 29–43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25dac8ae-b397-46e4-8721-ee4dcd6a1554
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.