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ABSTRACT

Purpose: The paper describes the use of artificial neural networks to research and predict 
the effect of chemical components and thermal treatment conditions on stainless steel's 
mechanical characteristics optimized by genetic algorithm.

Design/methodology/approach: The quantity of input variables of artificial neural 
networks has been optimized using genetic algorithms to enhance the prediction quality of 
artificial neural network and to enhance their efficiency. Then a computational model was 
trained and evaluated with optimized artificial neural networks.

Findings: Optimization, with the exception of tensile strength, has enabled the creation of 
artificial neural networks, which either showed a better or similar performance from base 
networks, as well as a decreased amount of input variables As a consequence, noise data 
is decreased in the computational model built with the use of these networks.

Research limitations/implications: Data analysis was required to confirm the relevance of 
obtaining information used for modelling to use in training procedures for artificial neural networks.

Practical implications: Using artificial intelligence enables the multi-faceted growth of 
stainless steel engineering, even though there is only a relatively small amount of descriptors. Built 
and optimized computational model building using optimized artificial neural networks enables 
prediction of mechanical characteristics after normalization of forged ferritic stainless steels.

Originality/value: In order to decrease production expenses of products, an introduced 
model can be obtained in manufacturing industry. It can also simplify the selection of 
materials if the engineer has to correctly choose chemical elements and appropriate plastics 
and/or heat processing of stainless steels, having the necessary mechanical characteristics.

Keywords: Numerical techniques, Computational Material Science, Artificial algorithms, 
Stainless steel
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1. Introduction 
 

The material mechanical properties prediction 

possibility is valuable for manufacturers and design 

engineers. That is why in [1] results of mechanical 

properties optimization of ferrite stainless steel after 

rolling treatment with the use of genetic algorithms were 

published. Now the author would like to present the 

continuation of this investigation. This paper describes 

the optimisation results of forged stainless steel 

mechanical properties. To preserve the possibility of 

results comparison the applied modelling methodology 

was identical with the methodology used in [1]. 

 

 

2. Material 
 

Examples of forged ferrite stainless structural steels 

were selected for examinations. The chromium concen-

tration, which for stainless steel exceeds 10.5% [2-10], 

was the main criterion for selecting steel types. Further 

criteria for minimum and maximum concentration of 

chemical elements, temperature and other of heat 

treatment were taken from literature. The selection of 

examined mechanical properties, was based on analysis  

of world biggest steel markets and studies of literature 

[11-16]. 

 

 

3. Investigation methodology 
 

Investigation methodology was identical to the study 

used to investigate steel after rolling treatment [1]. 

Computational model build with use of artificial 

intelligence allow prediction of mechanical properties of 

ferrite stainless steels after forging treatment based on 

input variables such as chemical composition and 

treatment conditions [17-23]. First stage of researches 

was the development of computational model built with 

the use of artificial neural networks. To improve 

prediction quality of artificial neural network models 

obtained artificial networks has been optimized with use 

of genetic algorithms. An automatic designer was used for 

comparative purposes in the modelling software. 

Modelling data was prepared using Excel [25] from 

Microsoft Office. Training of artificial neural networks 

and optimization through genetic algorithms was carried 

out using Statsoft's Statistica Neural Network [26]. 

4. Modelling of mechanical characteristics 

of ferrite stainless steel after forging 

treatment 
 

An adequate amount of variables influencing the 

network is needed to construct an artificial neural network 

that will yield results with a strong correlation to 

laboratory measured values. Too many variables can 

influence the acquired outputs and cause noise. It is 

necessary to remove these less important variables. The 

removal of variables, which impacts the output 

considerably, will lead to a major error. The "automatic 

designer," which selects random topologies with the 

lowest statistical mistake and the highest performance 

based on its search algorithms, is another way to select 

the appropriate variables. Another way to do this is to use 

a genetic algorithm. It shows which variables have a 

significant effect on output values and which have no 

effect of any kind. 

 

4.1. Input data analysis 

 

Analysis of data is required to verify whether data is 

suitable for use in training of artificial neural networks.  

At the start from the information ranges for artificial 

neural network model variables were acquired. The best 

data distribution to be used for artificial neural network 

training is the number of variables uniformly distributed 

across the entire spectrum. Unfortunately, it is difficult to 

achieve such distribution for all variables. Variables that 

have values in clustered groups, may have no effect 

whatsoever on the model of artificial neural network, it 

was recommended that such variables be removed before 

creating a model. It is assumed that those variables should 

be removed from the set of input variables by the genetic 

algorithm. 

Then the variable distribution within these ranges was 

determined using the Microsoft Excel histogram tool to 

further illustrate the results in a graph. Based on the 

results of the analysis, variables were assigned to three 

subgroups. The most significant variables were marked as 

"good", "mean" means less significant variables, and 

"poor" means the variables with the worst results. These 

variables should be discarded immediately from data 

vectors, but they were left for later analysis using 

artificial neural network tools and to confirm their proper 

operation. For carbon (Fig. 1a) and silicon concentration 

(Fig. 1b), the best distribution values were observed.  

1.   Introduction

2.  Material

4.1.  Input data analysis

4.  Modelling of mechanical 

characteristics of ferrite stainless 

steel after forging treatment
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a) b) 

  
 

Fig. 1. Data set histograms for a) carbon concentration, b) silicon concentration 

 
Five mechanical characteristics are estimated on the 

basis of input values such as concentration of chemical 

elements, normalizing temperature and time, rod diameter: 

yield strength (Rp0.2), tensile strength (Rm), relative 

elongation (A), relative area reduction (Z) and hardness 

(HB).  

The most significant parameters of artificial neural 

networks that were considered when choosing the best 

accessible network were the average absolute error, 

deviation ratio, and Pearson correlation [21].  

Average absolute error E is the difference between the 

reference value and the value obtained at the output for the 

output variable: 
 

1
| |  

 

where: 

 – error of j-th property, 

n – set size, 

 – i-th value measured, 

 – i-th calculated value. 

Standard deviations ratio s for errors and for data is the 

main indicator of the quality of the regression model built 

by the network: 
 

1
 

The correlation is determined by the standard Pearson R 

correlation coefficient for the set value and the value 

obtained at the output. 

 

 

 
4.2. Construction of base artificial neural networks 

 

 

The first model was constructed without optimisation 

using all 17 input variables. Table 1 presents the ranges of 

input and distribution of variables. All 1558 vectors based 

on laboratory data have been split into three sub-sets in 

relation 2-1-1. Using half of all available data, a set of 

vectors were created to modify the weights of the neuronal 

network (training set), one quarter of vectors were assigned 

to evaluate the prediction error during the training process 

(validation set). The remaining vectors was used to 

determine the prediction accuracy after network training 

process (testing set). The vectors were randomly assigned 

to the suitable sets.  

Table 2 introduces statistics on architecture and 

regression for the best artificial neural networks build with 

use of all variables. This model was chosen for 

optimization with the use of genetic algorithm. 

4.2.  Construction of base artificial neural 
networks
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Table 1.  

The range of input variable values 

range 
diameter, 

mm 

chemical composition, mass % normalising 

C Mn Si P S Cr Ni Mo W V Ti Cu Al temp., °C time, min 

min. 96 0.03 0.42 0.18 0.01 0 10.60 0.10 0 0 0 0 0 0 600 50 

max. 980 0.94 1.57 0.43 0.02 0.02 20.00 2.41 2.70 0.01 0.01 0.08 0.71 0.03 980 360 

distribution good good good good poor poor good mean mean poor poor poor good poor mean good 

 

 

Table 2.  

Parameters of non-optimized artificial neural networks 

v
ar

ia
b

le
 

MLP 

network 

architecture 

training set validation set testing set 

average 

absolute 

error 

standard 

deviation 

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation 

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation 

ratio 

Pearson 

correla- 

tion 

Rp0.2, MPa 17-3-1 19.21 0.36 0.93 24.88 0.36 0.93 20.16 0.26 0.97 

Rm, MPa 17-10-1 13.11 0.24 0.97 13.53 0.22 0.98 18.50 0.28 0.96 

A, % 17-5-1 0.92 0.56 0.83 0,88 0.46 0.89 0.97 0.56 0.83 

Z, % 17-5-1 1.68 0.47 0.88 1.86 0.51 0.86 2.17 0.63 0.72 

HB 17-5-1 9.36 0.60 0.80 11.45 0.63 0.78 13.03 0.83 0.61 

 

 

4.3. Construction of the artificial neural networks 

using automatic designer  

 

The next computational model has been created for 

verification purposes. For this model, artificial neural 

networks were developed using the automatic designer 

that promotes the critical building phases of the design.  

It has many instruments that make selecting the suitable 

network architecture automatically simple and optimizing 

the amount of variables input. Automatic designer also 

automatically stores the finest artificial neural network  

in which model built from these artificial neural networks 

will be used to assess the efficacy of a genetic algorithm. 

Table 3 introduces statistics on architecture and 

regression for the best artificial neural networks used in 

this model. 

 

4.4. Optimization of artificial neural network using 

genetic algorithm 

 

The last step was to use genetic algorithm to optimize 

the chosen artificial neural network. It consisted of creating 

the "mask" of variables to be used to model and examine 

the neural network's error. By adding to each variable 

penalty unit, the amount of inputs can be reduced, which 

can have a beneficial effect on their regression statistics. 

The genetic algorithm parameters in each test were the 

same except for the penalty unit, which increased every 

time the algorithm was used. With the amount of 200 

generations, the algorithm population was 200 individuals. 

Standard values for Holland's classic genetic algorithm are 

the mutation probability of 0.1 and the crossover 

probability of 0.4. Sampling value was set to 0.3 to speed 

up modelling procedures. This reduced the search time for 

about 2 minutes and allowed to increase the number of 

individuals in the population and the number of 

generations. Then artificial neural networks were built 

using genetic algorithm-suggested variables. In this model, 

architectures and regression statistics are presented in 

Table 4 for the best artificial neural networks. 

 

 

5. Modelling results discussion 
 

Figure 2 introduces a comparison of mean absolute 

error for base, automatically constructed and optimized 

4.4.  Optimization of artificial neural network 
using genetic algorithm

5.  Modelling results discussion

4.3.  Construction of the artificial neural 
networks using automatic designer
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neural artificial networks (testing set). Figure 3 introduces 

a comparison of Pearson correlation for base, automatically 

constructed and optimized neural artificial networks 

(testing set).  

 
 

 
Table 3.  

Parameters of artificial neural networks build using the automatic designer 

v
ar

ia
b

le
 

MLP 

network 

architecture 

training set validation set testing set 

average 

absolute 

error 

standard 

deviation 

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation 

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation 

ratio 

Pearson 

correla- 

tion 

Rp0.2, MPa 11-6-1 12.84 0.21 0.98 15.50 0.24 0.97 23.01 0.61 0.82 

Rm, MPa 11-7-1 14.68 0.25 0.98 12.37 0.19 0.98 17.61 0.34 0.94 

A, % 3-4-1 1.15 0.70 0.71 1.15 0.62 0.79 1.26 0.68 0.73 

Z, % 4-8-1 2.00 0.57 0.82 2.00 0.57 0.82 2.39 0.74 0.68 

HB 11-7-4-1 8.27 0.55 0.83 11.04 0.60 0.80 11.48 0.74 0.68 

 

 
Table 4.  

Parameters of artificial neural networks optimized using genetic algorithms 

v
ar

ia
b

le
 

MLP 

network 

architecture 

training set validation set testing set 

average 

absolute 

error 

standard 

deviation 

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation 

ratio 

Pearson 

correla- 

tion 

average 

absolute 

error 

standard 

deviation 

ratio 

Pearson 

correla- 

tion 

Rp0.2, MPa 14-4-1 23.74 0.27 0.93 18.93 0.27 0.96 16.90 0.21 0.98 

Rm, MPa 8-5-1 16.15 0.29 0.96 12.58 0.19 0.98 18.50 0.35 0.94 

A, % 9-4-1 0.86 0.54 0.84 0.94 0.54 0.84 0.93 0.53 0.85 

Z, % 9-5-1 1.71 0.49 0.87 1.91 0.55 0.84 2.13 0.70 0.78 

HB 4-8-1 9.66 0.70 0.72 12.10 0.70 0.72 10.21 0.73 0.69 

 
 

Regression statistics analysis of optimized artificial 

neural networks built for yield strength prediction Rp0.2 

showed that the optimized network with the lowest average 

absolute error and deviation ratio has the highest results. 

Pearson correlation also achieves peak value for this 

network. For tensile strength Rm. the optimised artificial 

neural network has a slightly smaller correlation, but also a 

much smaller error. For the relative elongation regression 

statistics analysis shows the best performance for artificial 

neural network optimised with use of genetic algorithm. 

The Pearson correlation is the highest with the smallest 

error. Very similar situation occurs for neural network 

optimized for the relative contraction Z. Regression 

statistics for automatic and optimized artificial neural 

networks build for prediction of Brinell hardness HB are 

very similar. Again optimised network have the Pearson 

correlation the highest along with the smallest mean 

average error. Large values of the deviations ratio in the 

case of HB results from the method of measuring this 

quantity (accuracy). Even in metallurgical approvals, for 

the same melts, the measurement results are given as 

ranges with a tolerance of up to 30%. 

Summarizing, for all material property, optimization 

improved the mean absolute error, which is the smallest  

in optimized networks. Only in the case of Rm,  

no improvement in Pearson's correlation was obtained, 

but the difference in neural networks is only 0.02% for 

the testing set. 
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Fig. 2. Comparison of mean absolute error for base, 

automatic designed and genetic optimized neural artificial 

networks (testing set) 

 

 
 

Fig. 3. Comparison of Pearson correlation for base, 

automatic designed and genetic optimised artificial neural 

networks (testing set) 

 

 

Table 5.  

Chemical composition, shape and heat treatment conditions of examined stainless steels used for verification purposes 

sample 
diameter, 

mm 

chemical composition, mass % normalising 

C Mn Si P S Cr Ni Mo W V Ti Cu Al temp., °C time, min medium 

1 271 0.77 0.74 0.29 0.01 0.01 14.95 8.47 0.92 0 0 0 0.35 0 720 240 

air 2 180 0.03 0.50 0.26 0.01 0.01 14.15 1.61 2.14 0 0.01 0 0.37 0.01 980 120 

3 50 0.11 0.46 0.22 0.01 0 12.11 1.35 2.65 0 0.23 0 0.33 0.02 960 60 

 

 

6. Experimental verification 
 

The procedure for forged steel experimental verification 

was identical as for steel after rolling treatment [1].  

An experimental set of three samples of ferritic stainless 

steel was created. Table 5 presents their chemical 

composition and treatment parameters. In order to 

minimize the variations between primary and verification 

results, material research was conducted in the same 

manner and using the same machinery used in the primary 

investigations. The results in a real laboratory obtained 

experimentally were compared to the results from 

computer models. All of this is presented in Table 6. 

Differences between predicted and measured mechanical 

property values are very low and expected outcomes in all 

designs for the respective property did not exceed the 

artificial neural network tolerance values. 

 

 

7. Summary 
 

The aim of this study was to optimize the neural 

artificial networks to predict, following normalization, the 

mechanical properties of ferrite stainless steels. Using the 

7.  Summary

6.  Experimental verification
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genetic algorithm, artificial neural networks have been 

optimized to obtain better regression statistics. 

Optimization enabled the creation of artificial neural 

networks, which either showed a better or similar 

performance from base networks, as well as a decreased 

amount of variables input. As a consequence, noise data is 

decreased in computational models built using these 

networks. Results of computational research conducted 

using these models were fully verified through experiments 

conducted in a real laboratory.  

 

 
Table 6.  

Comparison of measured and predicted mechanical properties of examined stainless steels used for verification purposes 

sample model Rp0.2, MPa Rm, MPa A, % Z, % HB 

  measured predicted measured predicted measured predicted measured predicted measured predicted 

1 

base 

379 

378 

583 

583 

31.8 

31.9 

46,2 

46.8 

160 

160 

automatic 378 583 30.2 43.8 157 

optimised 379 581 31.6 46.0 158 

2 

base 

373 

368 

573 

570 

19.6 

20.4 

51,1 

54.4 

152 

156 

automatic 369 581 22.8 58.6 163 

optimised 372 572 18.4 55.6 151 

3 

base 

334 

362 

551 

553 

30.0 

29.9 

67,9 

42.8 

148 

143 

automatic 342 555 31.8 61.5 147 

optimised 334 552 30.3 68.1 146 
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