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One of the most relevant problems related to most of the objective full-reference image 
and video quality assessment methods is their correlation with subjective perception of 
various types of distortions. Since the relation between the subjective scores, typically 
expressed as Mean Opinion Scores (MOS) or Differential MOS, and most of the metrics is 
nonlinear, various mapping functions are used in order to linearize this relation e.g. logistic 
function recommended by the Video Quality Experts Group (VQEG). Such compensation 
can also be conducted using some other function e.g. polynomial or exponential ones. 
Nevertheless, the results obtained for each of available datasets differ and such approach 
cannot be considered as universal. One of possible solutions, proposed in some earlier 
papers, is the use of combined metrics, which have significantly higher linear correlation 
with MOS or DMOS values without the necessity of nonlinear mapping. The comparative 
analysis of the optimisation results for some “state-of-the-art” metrics and proposed 
combined ones is also provided in the paper.

1. Objective image ąuality assessment methods versus subjective scores

The influence of image ąuality on the results of many image and video analysis 
algorithms is one of the most relevant aspects of contemporary image processing 
and analysis. Since the number of potential application areas of vision based 
systems is still growing, the challenges related to reliable image ąuality 
assessment are still up-to-date. Some examples of such areas are robot vision, 
automation, mechatronics, biomedical science or Intelligent Transportation 
Systems (ITS).

During recent 10 years many automatic image ąuality assessment methods 
have been proposed differing from each other considering both their types and 
usefulness. The first group of metrics is based on the subjective evaluation of 
image ąuality. Their application for each assessed image reąuires the feedback 
from the observers so they cannot be used directly in many applications, such as 
development of new image processing algorithms (e.g. filtering or lossy 
compression). Nevertheless, the Mean Opinion Scores (MOS) or Differential 
MOS (DMOS) values obtained during conducted subjective experiments can be 
utilised for development of some better objective metrics.
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The objective metrics can be divided into three major families: full-reference, 
reduced-reference and no-reference (“blind”) methods. The differences among 
them are related to the utilisation of the reference image without any distortions 
having an ideal quality. In many applications such image is unavailable, so the 
most desired direction of research seems to be the development of no-reference 
metrics. Nevertheless, such metrics are still not universal as they are sensitive only 
to one or two types of distortions.

In some applications there is an access to partial information about the 
reference image and the reduced-reference approach may be applied. However, a 
great majority of automatic image quality metrics with high universality belongs 
to the full-reference family.

For some applications classical metrics based on Mean Squared Error (MSE), 
such as Peak Signal-to-Noise Ratio (PSNR) are sufficient, but in recent years 
some better methods have been proposed, much better correlated with the Human 
Visual System (HVS) and therefore much more useful e.g. for the visualisation 
purposes.

Since there is a need to verify the results obtained using the objective image 
quality assessment methods, some perceptual experiments have been performed by 
various researchers from various countries. Their results have been provided as 
image quality assessment databases containing numerous images with various 
distortions and the Mean Opinion Scores (MOS) or Differential MOS values 
useful for the verification of newly proposed objective metrics.

The most relevant available image quality databases are known as LIVE [12], 
TID2008 [10] and CSIQ [2], although there are also some others. Three major 
datasets, mentioned above, have been used in this paper for the illustration of the 
nonlinear mapping problem being its main topic.

The first database has been provided in 2005 by the Laboratory for Image and 
Video Engineering (LIVE) at Texas University and is probably the most popular 
one. It contains 5 types of distortions and 779 test images obtained using the 29 
originals. Nevertheless, the results obtained using this database are not always 
representative, so in recent papers some additional verification using newer 
datasets is usually provided. It can be easily noticed that some o f the metrics 
proposed earlier by various researchers have been “tuned” specifically for the 
LIVE database as the only available with reasonable number of test images.

Another relevant database of similar size has been provided in 2009 by the 
research group from Oklahoma State University. This dataset is known as 
Categorical Subjective Image Quality (CSIQ) and contains 866 images based on 
30 reference images corrupted by 6 types of distortions. These images have been 
assessed by 35 observers using the linear displacement method.

The largest database has been developed at Tampere University in 2008, 
known as Tampere Image Database (TID2008), which contains 1700 images with 
17 types of distortions assessed by totally 838 persons from three countries (Italy,
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Finland and Ukraine) using pairwise sorting approach. One of its advantages is the 
presence of colour distortions, which are not considered in some other databases. 
Considering its size, it has become probably the most popular during recent two or 
three years.

Utilising the MOS or DMOS values for each distorted image form the datasets 
described above it is possible to verify the coincidence of the objective metric’s 
values with subjective scores. The most typical approach for such verification is its 
comparison with subjective scores taken from such databases by means of the 
correlation. Three typical methods are applications of Pearson, Spearman or 
Kendall correlation. However, only the first one is related to the prediction 
accuracy, therefore it can be treated as the most important one. Pearson linear 
correlation coefficient (PCC) can be expressed as:

where X i and Yi represent the consecutive values of the subjective and objective 
image ąuality metrics.

The application of Spearman Rank Order Correlation Coefficient (SROCC) 
and similar Kendall correlation (KROCC) is related only to the estimation of 
prediction monotonicity. Both correlation coefficients are based on the position of 
both images in two sorted lists according to the objective and subjective ąuality 
metrics.

2. Nonlinear mapping between subjective and objective metrics

A perfect objective image ąuality assessment metric should be correlated with 
subjective ąuality scores as well as possible. It should be noted that the 
correspondence between the objective and subjective scores should be linear 
leading to high accuracy of predicted ąuality using the objective metric. 
Nevertheless, the ąuality processing in the HVS is nonlinear, so the high values of 
the PCC for raw values of the metric are hard to obtain. Considering the nonlinear 
relationship between image distortions and their perceived ąuality, some additional 
mapping functions are usually applied to the ąuality metrics. The most typical 
approach is the use of the logistic function according to the recommendations [13, 
14] of the Video Quality Experts Group (VQEG). However, some researchers 
apply some other functions, such as polynomials and exponential functions [1] 
instead of the logistic one.

The nonlinear mapping functions used in this paper are the three-parameter 
logistic function expressed as:

PCC (X ,Y) (1)
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MOS = ------- , b' „ (2)
1 + eXp(- b 2 '{Q  -  b 3 ))

and five-parameter logistic one:
f  1 1 ^

M OS = b, • -------------- --------------rr + bĄ • Q + br (3)
[  2 1 + exp(b2 \ Q -  b3 ))J

where Q stands for the objective metric value and MOS (or DMOS) denotes the 
subjective score.

In order to verify the necessity o f using the logistic function and compare the 
results, third order polynomial and the 6-parameter exponential function have been 
also used in the experiments. The 6-parameter exponential function is expressed 
as:

MOS = a1 • exp(b1 • Q)+ a2 • exp(b2 • Q )+ a3 • exp(b3 • Q) (4)
The use o f the mapping functions leads to different optimal parameters for 

different datasets, therefore such approach cannot be considered as universal. 
Another approach, proposed in author’s papers [4-6], is the use of the nonlinear 
combination of some metrics, significantly increasing the linear correlation with 
subjective scores. The modified combined metrics proposed in some recent papers 
[7-9] lead to even better results and will also be discussed in the further part o f the 
paper.

3. State of the art image quality assessment metrics

The verification o f the necessity o f the nonlinear mapping and its impact on the 
obtained results has been performed using the most popular modern image quality 
metrics and the most interesting o f the recently proposed ones as well as some 
combined metrics proposed in author’s earlier papers.

Considering the poor correlation of older image quality metrics such as Mean 
Squared Error (MSE) or Peak Signal to Noise Ratio (PSNR) and the necessity of 
developing a new approach, the idea of the Universal Image Quality Index (UQI)
[15] has been presented in 2002. Its extension known as the Structural Similarity 
(SSIM), has become probably the most popular image quality metric in recent 
years inspiring also many other researchers. It is defined as the mean value o f the 
local quality indexes expressed as [16]:

( 2  x y  +  C  +  C 2 )

+  y  2  +  C 1 +  ° 2y  +  C 2 )

with the use of the sliding window approach, assuming 11^11 pixels Gaussian 
window as the default one. The symbols x and y denote the corresponding 
fragments of distorted and reference image respectively, whereas Ci and C2 are the 
stability constants preventing the division by zero. The local similarity value is

SSIM (^ y )  l . ■ L 2 x +  g 2 ^ ) (5)
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calculated using the mean values, variances and the covariance so the SSIM metric 
is sensitive to three types of distortions: luminance, contrast and structural (the 
three-component form of the metric can be found in the paper [16]). The multi- 
scale extension of this metric (MS-SSIM), proposed by the same group of 
researchers, is defined as [17]:

assuming the default weighting values for each j-th scale as proposed in the paper
[17] being the result of the optimisations conducted by the inventors of this metric 
using the 600 test images assessed by 8 human observers. The l, c and s symbols 
denote the luminance, contrast and structural part of the three-component form of 
the SSIM metric respectively.

An interesting approach to image ąuality assessment is based on the 
information theory which has been applied in the Visual Information Fidelity 
(VIF) metric [11]. This idea is based on the computation of the relative mutual 
information that vision extracts from the reference and distorted images in the 
wavelet domain.

Among various ideas applied for image ąuality assessment some application of 
the Singular Value Decomposition (SVD) may also be found, leading to promising 
results. In this case the SVD is applied to the original and the reference images. In 
one of the most recent metrics based on the SVD the comparison of the singular 
values and the left singular matrices leads to the definition of the R-SVD metric
[3] expressed as:

where di is the i-th singular value of the referee matrix calculated using the 
combination of the left singular matrix and the singular values of the distorted 
image and the right singular matrix of the original one (the detailed description can 
be found in the paper [3]).

One of the most recent ideas, leading to relatively high correlation of obtained 
ąuality scores with subjective evaluations is the Feature Similarity (FSIM) index 
[18]. This metric is based on the calculation of the phase congruency and gradient 
map, which can be efficiently obtained using Scharr filter recommended by the 
authors of the FSIM metric instead of well-known Prewitt or Sobel masks. The 
local value of the similarity index can be determined according to the following 
formula:

M

M S -  SSIM  (X, y ) = [l (X, y)]“M • n  [c( *, y ) f  • [s( *, y )f°

R-SVD = (7)
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f 2 • pC1(x,y ) • pC2(x,y) + tpc Y f 2 • G1(x y ) • G2(x y ) + tg ^ (8)
PC1 ( x, y) + PC2 (x, y) +tpc ) \  G1 ( x, y) + G2 ( x, y) +tg )

where PC and G stand for the phase congruency and gradient values calculated for 
both reference and distorted images. The typical weights proposed in the paper
[18] are a  = p  = 1 and the stabilizing constants T  prevent the division by zero, 
similarly as in the UQI and SSIM metrics. The final value of the FSIM metric can 
be obtained as:

X X  S (x  y  )• P C m (x  y )
FSIM = x ,--- (9)

X X  PCm (x, y) 1 '
x y

where PCm(x,y) = max(PC1(x,y), PC2(x,y)).
Nevertheless, assuming different values of the a  and p  weighting coefficients 

even better results can be obtained, leading to the Weighted Feature Similarity 
(Weight FSIM), proposed in one of the recent papers [8], which can also be 
applied in the colour version, similarly as the colour Feature Similarity (FSIMc).

A similar idea based on the application of Riesz transform has been proposed 
earlier by the FSIM inventors in the paper [19]. It is based on the assumption that 
the most important regions from the perceptual point of view are located near the 
edges of the objects. For this reason the usage of the mask obtained as the result of 
using Canny filter with additional dilation are proposed. For such masked image 
the first and second order Riesz transform coefficients are calculated which are 
considered as five masked image features. The local similarity of such maps for 
two images denoted as f  and g is conducted in a similar way as for FSIM metric, 
according to the following formula:

di  (x, y ) = 2 ■■ f 1(x , y )  • g 2(x-y ) + C 
f 1 (x  y )  + g  2 (x  y ) + C

for each feature i = 1..5 using the stabilizing constant C. Then, the final RFSIM 
value can be calculated as:

5 X X  d i (x, y) • M  ta y)
R F S I M  = n  xyX X M (x,y) (l l )

x y

using the binary mask M obtained after edge filtering.
In order to avoid the necessity of the nonlinear mapping, discussed above, the 

idea of the Combined Quality Metric (CQM) has been proposed in one of the 
earlier papers [4], which is in fact the nonlinear combination of three metrics 
defined as:

CQM  = (MS -  SSIM  )7 • (VIF )0 3 • (R -  SVD )-015 (12)

421



The exponent values are nearly optimal by means of the Pearson linear correlation 
coefficient, and have been obtained as the result of optimisation conducted using 
TID2008 database as the largest currently available one.

This approach has been extended recently leading to the idea of the Combined 
Image Similarity Metric [7] obtained by replacing the R-SVD metric by the 
FSIMc and conducting the optimisation of the exponents in the same way as for 
the CQM. The obtained metric can be expressed as:

C IS I = (mM S -  S S IM  )0 5 • (VIF  )0 3 • (F SIM c)5 (13)
A high correlation between the MOS/DMOS values and an objective metric 

can also be obtained using only two metrics. Such approach has been verified 
using the combination of FSIM and RFSIM metric leading to the Hybrid Feature 
Similarity [9]. The optimised values of the exponents for each metric (assuming 
using the colour version of Feature Similarity) are: 0.4 for RFSIM and 3.5 for 
FSIMc.

4. Analysis of experimental results

During recent years many new image quality metrics have been delivered by 
various researchers but most o f them are based on the assumption that the 
additional nonlinear mapping is necessary for obtaining high correlation with 
subjective scores. The verification of such necessity has been done using some 
calculations utilising the subjective scores from available image quality 
assessment databases. In addition, the influence of the mapping function’s type 
has been determined as well as the increase o f the PCC for the most relevant 
metrics and the proposed combined metrics.

The results of the conducted experiments for three most relevant image quality 
assessment databases are presented in Tables 1-3 and some chosen scatter plots 
before and after the nonlinear regression are presented in Figs. 1-6.
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Table 1. Pearson correlation coefficients of the objective metrics after nonlinear mapping 
using various functions for the LIVE database

Mapping
function SSIM MS-

SSIM VIF R-SVD RFSIM FSIM CQM CISI Hybrid
FSIM

Weight
FSIM

none 0.8159 0.4762 0.7327 0.4999 0.9352 0.8586 0.7214 0.9453 0.9532 0.8116
logistic3 0.9376 0.8929 0.7806 0.5006 0.9352 0.9539 0.7326 0.9538 0.9559 0.9500
logistic5 0.9446 0.6130 0.8024 0.5228 0.9352 0.9597 0.7327 0.9591 0.9572 0.9598

polynomial 0.9376 0.6130 0.7907 0.5089 0.9352 0.9491 0.7322 0.9591 0.9581 0.9320
exponential 0.9448 0.6130 0.8038 0.5102 0.9370 0.9620 0.7329 0.9596 0.9584 0.9500
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Table 2. Pearson correlation coefficients of the objective metrics after nonlinear mapping 
using various functions for the TID2008 database
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Mapping
function SSIM MS-

SSIM VIF R-SVD RFSIM FSIM CQM CISI Hybrid
FSIM

Weight
FSIM

none 0.6012 0.7843 0.7777 0.4782 0.8596 0.8300 0.8600 0.8752 0.8853 0.8331
logistic3 0.6520 0.8390 0.8055 0.4803 0.8642 0.8710 0.8619 0.8752 0.8853 0.8521
logistic5 0.6542 0.8425 0.8090 0.4808 0.8645 0.8738 0.8672 0.8807 0.8873 0.8878

polynomial 0.6531 0.8359 0.8101 0.4808 0.8642 0.8703 0.8622 0.8790 0.8862 0.8855
exponential 0.6409 0.8424 0.8110 0.4866 0.8649 0.8724 0.8621 0.8807 0.8868 0.8890

Fig. 1. Scatter plots of the MS-SSIM metric versus MOS values illustrating the changes 
in the linear relations between the objective and subjective scores after the nonlinear regression

for TID2008 database
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Fig. 2. Scatter plots of the FSIM metric versus MOS values illustrating the changes 
in the linear relations between the objective and subjective scores after the nonlinear regression

for TID2008 database

Table 3. Pearson correlation coefficients of the objective metrics after nonlinear mapping 
using various functions for the CSIQ database

Mapping
function SSIM MS-

SSIM VIF R-SVD RFSIM FSIM CQM CISI Hybrid
FSIM

Weight
FSIM

none 0.7654 0.7708 0.9219 0.7411 0.9130 0.8048 0.9189 0.9346 0.9158 0.8044
logistic3 0.8151 0.8972 0.9219 0.7437 0.9164 0.9096 0.9189 0.9354 0.9284 0.9220
logistic5 0.8154 0.8997 0.9278 0.7459 0.9167 0.9120 0.9208 0.9361 0.9284 0.9233

polynomial 0.8153 0.8872 0.9264 0.7499 0.9167 0.9028 0.9190 0.9368 0.9284 0.9135
exponential 0.8146 0.8998 0.9278 0.7514 0.9185 0.9104 0.9209 0.9372 0.9294 0.9220
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Fig. 3. Scatter plots of the CQM metric versus MOS values illustrating the changes 
in the linear relations between the objective and subjective scores after the nonlinear regression

for TID2008 database

0
0 7 8

0 6 7 8

425



K. Okarma /  On the optimisation on nonlinear mapping.

MOS

0.4032

0.4032

0.4032

7= 0.4032

-  0.4032co
O

0.4032

0.4032
4

MOS
0 2 3 5 6 7 8

Fig. 4. Scatter plots of the CISI metric versus MOS values illustrating the changes 
in the linear relations between the objective and subjective scores after the nonlinear regression

for TID2008 database
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Fig. 6. Scatter plots of the Hybrid FSIM metric versus MOS values illustrating the changes 
in the linear relations between the objective and subjective scores after the nonlinear regression

for TID2008 database

It can be noticed that the proposed combined metrics are much less sensitive to 
the use of the mapping function than single similarity based metrics. Analysing the 
results for the TID2008 database, only FSIM metric can achieve better prediction 
accuracy than CQM but only after nonlinear regression. Nevertheless, for CSIQ 
database, FSIM achieves worse results than combined metric and slightly higher 
correlation values can be observed for the VIF metric. Nevertheless the best results 
for this dataset are achieved using newly proposed Hybrid Feature Similarity and
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Weighted FSIM. Slightly worse results can be obtained using Combined Image 
Similarity Index, which leads to the best correlation for the CSIQ dataset.

The combined metrics seem to be the representatives o f the most universal 
approach by means of image quality prediction accuracy without the need of any 
additional nonlinear mapping, since the correlation coefficients obtained after the 
nonlinear regression are not much better, except for Weighted FSIM.
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