PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wind turbine fault diagnosis through temperature analysis: an artificial neural network approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wind turbines undergo dynamic loads along all the phases of transformation of wind kinetic energy into power output to be fed into the grid. Gearbox breakdowns are one of the most common and most severe causes of energy losses and it is therefore crucial to prevent and forecast them. Straightforward vibration analysis is very demanding by the point of view of technology, costs and complexity of signal denoising. A considerable keystone in fault diagnosis is the analysis of Supervisory Control And Data Acquisition (SCADA) systems. In particular, thermal behaviour of wind turbines fits well with the common time scale of SCADA data; heating trends are fairly responsive as a consequence of rotor vibration. Machine learning techniques applied to SCADA data are very powerful in reconstructing inputs - output dependency. On these grounds, in this work an Artificial Neural Network approach is proposed for early diagnosis of gearbox faults. The method is validated on the data of a wind farm operating in Italy. It is shown that the method is capable in recognizing incoming faults with a very manageable advance also with data on short time scales.
Czasopismo
Rocznik
Strony
9--16
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
autor
  • University of Perugia, Department of Engineering, Perugia, Italy, Via G. Duranti 93, 06125 Perugia, Italy & WindSim AS, Fjordgaten 15 N-3125 Tønsberg, Nowary
autor
  • University of Perugia, Department of Engineering, Perugia, Italy, Via G. Duranti 93, 06125 Perugia, Italy
autor
  • Renvico srl, Via San Gregorio 34, Milano 20124, Italy
Bibliografia
  • 1. Castellani F, Astolfi D, Mana M, Burlando M, Meißner C, Piccioni E. Wind Power Forecasting techniques in complex terrain: ANN vs. ANNCFD hybrid approach. Journal of Physics: Conference Series Vol. 753, No. 8, p. 082002. IOP Publishing. 2.
  • 2. Castellani F, Burlando M., Taghizaded S., Astolfi D:, Piccioni E. Wind energy forecast in complex sites with a hybrid neural network and CFD based method. Energy Procedia, 2014; 45: 188-197.
  • 3. Federico C, Burlando M. Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Applied Energy, 2012; 99:154-166.
  • 4. Condition Monitoring. Exploring the innovations, challenges and potential of the products and services that keep wind turbines operating. Windpower Monthly, Haymarket Media Group, July 2013.
  • 5. Wind Turbine Control Systems. Exploring the capabilities of the latest systems, and the drivers and challenges for further development. Windpower Monthly, Haymarket Media Group, March 2014.
  • 6. Kusiak A, Zhang Z, Verma A. Prediction, operations and condition monitoring in wind energy. Energy, 203; 60:1-12.
  • 7. Lu B, Li Y, Wu X, Yang Z. A review in recent advances in wind turbine condition monitoring and fault diagnosis. Power Electronics and Machines in Wind Applications, 2009: 1-7.
  • 8. Tchakoua P, Wamkeue R, Ouhrouche M, SlaouiHasnaoui F, Tameghe TA, Ekemb G. Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges. Energies, 2014; 7(4): 2595-2630.
  • 9. Bassett K, Carriveau R, Ting DS. Vibration analysis of 2.3 MW wind turbine operation using the discrete wavelet transform. Wind Engineering, 2010; 34:375-388.
  • 10. Purarjomandlangrudi A; Nourbakhsh G, Esmalifalak M, Tan A. Fault detection in wind turbine: a systematic literature review. Wind engineering, 2013, 37:535–547.
  • 11. Castellani F, D’Elia G, Astolfi D, Mucchi E, Giorgio D, Terzi L. Analyzing wind turbine flow interaction through vibration data. Journal of Physics: Conference Series. 2016 Vol. 753, No. 11, p. 112008.
  • 12. Rodrigo JS, Gancarski P, Arroyo RC, Moriarty P, Chuchfield M, Naughton JW, Hansen KS, Machefaux E, Koblitz T, Maguire E.. Iea-task 31 wakebench: Towards a protocol for wind farm flow model evaluation. part 1: Flow- over-terrain models. Journal of Physics: Conference Series, 2014 Vol. 524, No. 1, p. 012105.
  • 13. Moriarty P, Rodrigo JS, Gancarski P, Chuchfield M, Naughton JW, Hansen KS, Machefaux E, Maguire E, Castellani F, Terzi L. Iea-task 31 wakebench: Towards a protocol for wind farm flow model evaluation. part 2: Wind farm wake models. Journal of Physics: Conference Series, 2014; 524(1): 012185.
  • 14. Barthelmie R, Pryor S, Frandsen S, Hansen K, Schepers J, Rados K, Schlez W, Neubert A, Jensel L, Neckelmann S. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. Journal of Atmospheric and Oceanic Technology, 2010; 27(8): 1302-1317.
  • 15. Porté - Agel F, Wu YT, Chen CH. A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm. Energies, 2013; 6(10): 297-5313.
  • 16. Castellani F, Astolfi D, Garinei A, Proietti S, Sdringola P, Terzi L, Desideri U. How wind turbines alignment to wind direction affects efficiency? A case study through SCADA data mining. Energy Procedia, 2015; 75:697-703.
  • 17. Castellani F, Astolfi D, Sdringola P, Proietti S, Terzi L. Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment. Applied Energy, 2017; 185(1): 1076-1086.
  • 18. Castellani F, Astolfi D, Piccioni E, Terzi L. Numerical and experimental methods for wake flow analysis in complex terrain. Journal of Physics: Conference Series, 2015; 625.
  • 19. Castellani F, Astolfi D, Piccioni E, Terzi L. Numerical and experimental methods for wake flow analysis in complex terrain. Journal of Physics: Conference Series, 2015;625.
  • 20. Bastankah M, Porté - Agel F. A new analytical model for wind-turbine wakes. Renewable Energy, 2014; 70: 116-123.
  • 21. Marathe N, Swift A. Hirth B, Walker R, Schroeder J. Characterizing power performance and wake of a wind turbine under yaw and blade pitch. Wind Energy 2015.
  • 22. Schlechtingen, M., Santos, I. F., & Achiche, S. Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Transactions on Sustainable Energy, 2015; 4(3):671-679.
  • 23. Xia Y, Ahmed KH, Williams BW. Wind turbine power coefficient analysis of a new maximum power point tracking technique. IEEE Transactions on Industrial Electronics, 2014; 60(3):1122-1132.
  • 24. Castellani F, Garinei A, Terzi L, Astolfi D, Gaudiosi M. Improving windfarm operation practice through numerical modelling and supervisory control and data acquisition data analysis. Renewable Power Generation, 2014;8 (4): 367-379.
  • 25. Castellani F, Astolfi D, Terzi L, Hansen KS, Rodrigo JS. Analysing wind farm efficiency on complex terrains. Journal of Physics: Conference Series, 2014; 524(1): 012142.
  • 26. Astolfi D, Castellani F, Garinei A, Terzi L. Data mining techniques for performance analysis of onshore wind farms. Applied Energy, 2015; 148: 220-233.
  • 27. Astolfi D, Castellani F, Terzi L. Mathematical methods for SCADA data mining of onshore wind farms: Performance evaluation and wake analysis. Wind Engineering, 2016; 40(1): 69-85.
  • 28. Marvuglia A. Messineo A. Monitoring of wind farms’ power curves using machine learning techniques. Applied Energy, 2012; 98:574-5832.
  • 29. Feng Y, Qiu Y, Crabtree CJ, Long H, Tavner PJ. Monitoring wind turbine gearboxes. Wind Energy, 2013; 16:728-740.
  • 30. Kusiak A, Verma A. Analyzing bearing faults in wind turbines: A data-mining approach. Renewable Energy 2015; 48: 110-116.
  • 31. Zaher A, McArthur S, Infield D, Patel Y. Online wind turbine fault detection through automated SCADA data analysis. Wind Energy, 2009; 12:574-593.
  • 32. Bangalore P, Tjernberg LB. An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 2015; 6:980-987.
  • 33. Sun P, Li J, Wang C, Lei X. A generalized model for wind turbine anomaly identification based on SCADA data. Applied Energy, 2016; 168: 550-567.
  • 34. Tautz-Weinert J, Watson SJ. Comparison of different modelling approaches of drive train temperature for the purposes of wind turbine failure detection. Journal of Physics: Conference Series. 2016; 753: 072014.
  • 35. Astolfi D, Castellani F, Terzi L. Fault prevention and diagnosis through SCADA temperature data analysis of an onshore wind farm. Diagnostyka, 2014, 15(2):71-78.
  • 36. Schlechtingen M, Santos IF, Achiche S. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: System description. Applied Soft Computing, 2013; 13(1):259-270.
  • 37. Schlechtingen M, Santos IF. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 2: Application examples. Applied Soft Computing, 2014; 14, 447-460.
  • 38. Du M, Ma S, He Q. A SCADA data based anomaly detection method for wind turbines. In Electricity Distribution (CICED), 2016 China International Conference on (pp. 1-6). IEEE. 2016.
  • 39. Garcia MC, Sanz-Bobi,MA, del Pico J. SIMAP: Intelligent System for Predictive Maintenance: Application to the health condition monitoring of a wind turbine gearbox. Computers in Industry, 2016; 57(6):552-568.
  • 40. Braccesi C, Cianetti F, Tomassini L. Random fatigue. A new frequency domain criterion for the damage evaluation of mechanical components. International Journal of Fatigue, 2015;70:417-427.
  • 41. Braccesi C, Cianetti F, Tomassini L. An innovative modal approach for frequency domain stress recovery and fatigue damage evaluation. International Journal of Fatigue 2016, 91: 382-396.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25cb7132-e790-4563-aec6-91354c47caa2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.