Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the effect of heat treatment on the microstructure and mechanical properties of 2209 duplex stainless steel fabricated by wire arc additive was analyzed. It was found that solution treatment at 1100°C for 2 hours and tempering at 300°C for 2 hours can effectively improve the grain inhomogeneity of 2209 duplex stainless steel, eliminate γ2 and harmful brittle phases, and take into account the mechanical properties and corrosion resistance. Compared with the original deposition state, the hardness and yield strength increased by 10% and 31.8% to 245.6 HV and 499.7 MPa, which meet the requirements of engineering propellers. Electron back-scattered diffraction studies showed that the grains became refined and austenite maintained <101>//Z orientation after solution heat treatment. Many small-angle grain boundaries were present in both the original sample and the solid solution, but further tempering transformed the small-angle grain boundaries into large-angle grain boundaries.
Wydawca
Czasopismo
Rocznik
Tom
Strony
667--674
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab.
Twórcy
autor
- Anhui University of Technology, School of Metallurgical Engineering, Ma’anshan 243002, China
autor
- Anhui University of Technology, School of Metallurgical Engineering, Ma’anshan 243002, China
autor
- Anhui University of Technology, School of Metallurgical Engineering, Ma’anshan 243002, China
autor
- Tongling University, Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling 244061, China
autor
- Tongling University, Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling 244061, China
Bibliografia
- [1] S. Sasaki, T. Katsumura, J. Yanagimoto, Grain refinement technology for duplex stainless steel using rapid cooling immediately before hot working. J. Mater. Process. Tech. 281, 116614 (2020). DOI: https://doi.org/10.1016/j.jmatprotec.2020.116614
- [2] Y.Q. Wang, J. Han, H.C. Wu, B. Yang, X.T. Wang, Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel. Nucl. Eng. Des. 259, 1-7 (2013). DOI: http://dx.doi.org/10.1016/j.nucengdes.2013.02.037
- [3] D. Zhang, A. Liu, B. Yin, P. Wen, Additive manufacturing of duplex stainless steels - A critical review. J. Manuf. Process. 73, 496-517 (2022). DOI: https://doi.org/10.1016/j.jmapro.2021.11.036
- [4] S.I. Evans, J. Wang, J. Qin, Y. He, P. Shepherd, J. Ding, A review of WAAM for steel construction - Manufacturing, material and geometric properties, design, and future directions. Structures 44, 1506-1522 (2022). DOI: https://doi.org/10.1016/j.istruc.2022.08.084
- [5] S. Singh, S.K. Sharma, D.W. Rathod, A review on process planning strategies and challenges of WAAM. Mater. Today Proc. 47, 6564-6575 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.02.632
- [6] A. Rajesh Kannan, N. Siva Shanmugam, V. Rajkumar, M. Vishnukumar, Insight into the microstructural features and corrosion properties of wire arc additive manufactured super duplex stainless steel (ER2594). Mater. Lett. 270, 127680 (2020). DOI: https://doi.org/10.1016/j.matlet.2020.127680
- [7] B. Parvaresh, R. Miresmaeili, M. Yazdizadeh, Characterization of wire arc additive manufactured products: a comparison between as-deposited and inter-layer cold worked specimens, J. Manuf. Process. 57, 61-71 (2020). DOI: https://doi.org/10.1016/j.jmapro.2020.05.053
- [8] G. Posch, K. Chladil, H. Chladill, Material properties of CMT - metal additive manufactured duplex stainless steel blade-like geometries, Weld World 61, 873-882 (2017). DOI: https://doi.org/10.1007/s40194-017-0474-
- [9] K. Wu, X. Hua, C. Shen, Y.N. Ding, J. Xin, G. Mou, L. Wang, Y. Zhang, W. Zhou, K.M. Reddy, Effect of variable polarity during cold metal transfer on microstructure and mechanical properties of directed energy deposition-arc built 2209 duplex stainless steel. Addit. Manuf. 103750 (2023). DOI: https:// doi.org/10.1016/j.addma.2023.103750
- [10] Y. Zhang, S. Wu, F. Cheng, A duplex stainless steel (DSS) with striking tensile strength and corrosion resistance produced through wire arc-additive manufacturing (WAAM) using a newly developed flux-cored wire. Mater. Lett. 313, 131760 (2022). DOI: https://doi.org/10.1016/j.matlet.2022.131760
- [11] P.P. Nikam, D. Arun, K.D. Ramkumar, N. Sivashanmugam, Microstructure characterization and tensile properties of CMT-based wire plus arc additive manufactured ER2594. Mater. Charact. 169, 110671 (2020). DOI: https://doi.org/10.1016/j.matchar.2020.110671
- [12] Z. Zhang, H. Jimg, L. Xu, Y. Han, L. Zhao, Effect of post-weld heat treatment on microstructure evolution and pitting corrosion resistance of electron beam-welded duplex stainless steel. Corros. Sci. 141, 30-45 (2018). DOI: https://doi.org/10.1016/j.corsci.2018.06.030
- [13] Z. Zhang, H. Zhao, H. Zhang, J. Hu, J. Jin, Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment. Corros Sci. 121, 22-31 (2017). DOI: http://dx.doi.org/10.1016/j.corsci.2017.02.006
- [14] S.T. Kim, S.H. Jang, I.S. Lee, Y.S. Park, Effects of solution heat-treatment and nitrogen in shielding gas on the resistance to pitting corrosion of hyper duplex stainless steel welds. Corros. Sci. 53, 1939-4197 (2011). DOI: http://doi:10.1016/j.corsci.2011.02.013
- [15] Y. Zhang, F. Cheng, S. Wu, Improvement of pitting corrosion resistance of wire arc additive manufactured duplex stainless steel through post-manufacturing heat-treatment. Mater. Charact. 171, 110743 (2021). DOI: https://doi.org/10.1016/j.matchar.2020.110743
- [16] A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian, J.A. Szpunar, Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal. Mate. Charact. 106, 27-35 (2015). DOI: http://dx.doi.org/10.1016/j.matchar.2015.05.017
- [17] Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints. Appl. Surf. Sci. 394, 297-314 (2017). DOI: http://dx.doi.org/10.1016/j.apsusc.2016.10.047
- [18] Y. Zhang, S. Cheng, S. Wu, F. Chen, The evolution of microstructure and intergranular corrosion resistance of duplex stainless steel joint in multi-pass welding. J. Mater. Process. Technol. 277, 116471 (2020). DOI: https://doi.org/10.1016/j.jmatprotec.2019.116471
- [19] Y. Shi, W. Li, L. Tian, Y. Sun, J. Zhang, H. Jing, L. Zhao, L. Xu, Y. Han, Effect of ferrite and grain boundary characteristics on corrosion properties of thermal simulated 316 L heat affected zone, Corros. Sci. 222, 111384 (2023). DOI: https://doi.org/10.1016/j.corsci.2023.111384
- [20] M. Vishnukumar, V. Muthupandi, S. Jerome, Effect of post-heat treatment on the mechanical and corrosion behaviour of SS316L fabricated by wire arc additive manufacturing. Mater. Lett. 307, 131015 (2022). DOI: https://doi.org/10.1016/j.matlet.2021.131015
- [21] L.N. Zhang, O.A. Ojo, Corrosion behavior of wire arc additive manufactured inconel 718 superalloy. J. Alloys. Compd. 829, 154455 (2020). DOI: https://doi.org/10.1016/j.jallcom.2020.154455
- [22] E. Westin, Microstructure and properties of welds in the lean duplex stainless steel LDX 2101. Metallurgi Och Metalliska Material, (2010).
- [23] A.J. Ramirez, S.D. Brandi, J.C. Lippold, Secondary austenite and chromium nitride precipitation in simulated heat affected zones of duplex stainless steels. Sci. Technol. Weld. Joi. 9 (4), 301-13 (2013). DOI: https://doi:10.1179/136217104225021715
- [24] C.H.X.M. Magalhães, G.L.D. Faria, L.E. Lageiro, J.D. Silva, Characterization of the austenite Reformation Mechanisms as a Function of the Initial Ferritic State in a UNS S32304 Duplex Stainless Steel. Mater. Res. 20 (6), 1470-1479 (2017). DOI: http://dx.doi.org/10.1590/1980-5373-MR-2016-1122
- [25] X. Zhang, K. Wang, Q. Zhou, J. Kong, Y. Peng, J. Ding, J. Diao, C. Diao, D. Yang, Y. Huang, T. Zhang, S.W. Williams, Element partitioning and electron backscatter diffraction analysis from feeding wire to as-deposited microstructure of wire and arc additive manufacturing with super duplex stainless steel. Mater. Sci. Eng. A773, 138856 (2020). DOI: https://doi.org/10.1016/j.msea.2019.138856
Uwagi
This work was jointly supported by grants from Anhui Provincial Natural Science Foundation (Grant No. 2108085ME173), Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University (Grant No. TLXYCHR-O-21YB03), and open founds from Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling (Grant No. SKF20-05).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25c3462a-9be5-42b1-a6cd-d0420e8be0fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.