PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Synthesis Conditions on the Chemical Structure and Composition of ZnO Nanoparticles Composite Systems / Polymer Fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanostructured systems based on ZnO nanoparticles composite systems/polymer fibers have attracted a lot of attention in the last years because of their applications in multiple areas. Nanofibres based on polymers are used in many domains such as nanocatalysis, controlled release of medicines, environmental protection and so on. This work show the synthesis of cellulose acetate butyrate (CAB) nanofiber useful as substrates for growing ZnO nanocrystals and that ZnO is an unorganic metal oxide nanoparticle used to improve the piezoelectric properties of the polymer. The piezoelectric properties of ZnO-doped polymeric was investigated with atomic force microscopy and measurements were performed, in contact technique, in piezoelectric response mode (PFM). In order to analyze the structural and textural features, the obtained materials were characterized using advanced physical-chemical techniques such as X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM). The XRD patterns show the characteristic reflections of ZnO with a hexagonal type wurtzit structure and the broad peaks of the polymer. The SEM images reveal the presence of ZnO nanoparticles on top of the polymer nanofibres. In most ZnO-based nanocomposites their morphology is uncontrolled (agglomerated granules), but in ase of using cellulose acetobutyrate this becomes controlled by observing through flower-like structures SEM and AFM) The study of the functional properties of ZnO/polymer fiber composite systems showed that they have piezoelectric properties which give them the characteristics of smart material with possible sensor and actuator applications. Recent literature reports that the synthesis and characterization of ZnO-polymer nanocomposites are more flexible materials for various applications.
Słowa kluczowe
Twórcy
  • Apollonia University of Iasi, Faculty of Dental Medicine, 11 Pacurari Str., 700511, Iasi, Romania
  • Apollonia University of Iasi, Faculty of Dental Medicine, 11 Pacurari Str., 700511, Iasi, Romania
  • Institute of Macromolecular Chemistry “Petru Poni” Iasi, Aleea Grigore Ghica Voda, 41A, 700487, Iasi, Romania
Bibliografia
  • [1] A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism, Adv. Colloid. Interface. Sci. 249, 37-52 (2017). DOI: https://doi.org/10.1016/j.cis.2017.07.033
  • [2] H. He, R. Chen, l. Zhang, T. Williams, X. Fang, W. Shen, Fabrication of single-crystalline gold nanowires on cellulose nanofibers, J. Colloid Interface Sci. 562, 333-341 (2020). DOI: https://doi.org/10.1016/j.jcis.2019.11.093
  • [3] J. Ding, J. Zhang, Electrospun polymer biomaterials, Prog. Polym. Sci. 90, 1-34 (2019). DOI: https://doi.org/10.1016/j.progpolymsci.2019.01.002
  • [4] D. Ponnamma, J.J. Cabibihan, Synthesis, Optimization and applications of ZnO/polymer nanocomposites, Mater. Sci. Eng. C. 98, 1210-1240 (2019). DOI: https://doi.org/10.1016/j.msec.2019.01.081
  • [5] D.M. Follmann, A.F. Naves, R.A. Araujo, O.N. Oliveira, Hybrid Materials and Nanocomposites as Multifunctional Biomaterials Curr. Pharm. Des. 23, 3794-3813, (2017). DOI: https://doi.org/10.2174/1381612823666170710160615
  • [6] P. Pascariu, M. Homocianu, Preparation of La doped ZnO ceramic nanostructures by electrospinning-calcination method: effect of La3+ doping on optical and photocatalytic properties, Appl. Surf. Sci. 476, 16-27, (2019). DOI: https://doi.org/10.1016/j.apsusc.2019.01.077
  • [7] V. Anand, V.C. Srivastava, Zinc oxide nanoparticles synthesis by electrochemical method: Optimization of parameters for maximization of productivity and characterization, J. Alloys. Compd. 636, 288-292, (2015). DOI: https://doi.org/10.1016/j.jallcom.2015.02.189
  • [8] J. Ding, J. Zhang, Electrospun polymer biomaterials, Prog. Polym. Sci. 90, 1-34, (2019). DOI: https://doi.org/10.1016/j.progpolymsci.2019.01.002
  • [9] T. Blachowicz, A. Ehrmann, Most recent developments in electrospun magnetic nanofibers: a review, J. Eng. Fiber. Fabr. 15, 1-6, (2020). DOI: https://doi.org/10.1177/1558925019900843
  • [10] M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo, D.Y. Kim, Electrospun Nanofibers for Energy and Environmental Application, Synth. Met. 15 (1-3), 77-80, (2005).
  • [11] D.N. Phan, H.Y. Choi, S.-G. Oh, M. Kim, H. Lee, Fabrication of ZnO Nanoparticle-Decorated Nanofiber Mat with High Uniformity Protected by Constructing Tri-Layer Structure, Polymers. 12, 1859, (2020). DOI: https://doi.org/10.3390/polym12091859
  • [12] C.M. Dumont, A.C. Mitchell, M.K. Munsell, J.C. Andrew, K. Strnadova, J. Park, B.J. Cummings, A.J. Anderson, l.D. Shea, Aligned hydrogel tubes guide regeneration following spinal cord injury, Biomaterials. 25 (5), 877-86, (2020). DOI: https://doi.org/10.1016/j.actbio.2018.12.052
  • [13] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials. 26 (15), 2603-10, (2005). DOI: https://doi.org/10.1016/j.biomaterials.2004.06.051
  • [14] D. Ponnamma, J.J. Cabibihan, M. Rajan, S.S. Pethaiah, K. Deshmukh, J.P Gogoi, S.K.K. Pasha, M.B. Ahamed, J. Krishnegowda, B.N. Chandrashekar, A.R. Polu, C. Cheng, Synthesis, optimization and applications of ZnO/polymer nanocomposites, Mater. Sci. Eng. C. 98, 1210-1240, (2019). DOI: https://doi.org/10.1016/j.msec.2019.01.081
  • [15] M.S. Sorayani Bafqi, R. Bagherzadeh, M. Latifi, Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency, J. Polym. Res. 22, 1-9, (2015). DOI: https://doi.org/10.1007/s10965-015-0765-8
  • [16] D. Shin, J. Kim, J. Chang, Experimental study on jet impact speed in near-field electrospinning for precise patterning of nanofiber, J. Manuf. Process. 36, 231-7, (2018). DOI: https://doi.org/10.1016/j.jmapro.2018.10.011
  • [17] G. Prado-Prone, P. Silva-Bermudez, A. Almaguer-Flores, J.A. García-Macedo, V.I. García, S.E. Rodil, C. Ibarra, C. Velasquillo, Single-step, acid-based fabrication of homogeneous gelatinpolycaprolactone fibrillar scaffolds intended for skin tissue engineering, Int. J. Biol. Macromol. 14 (5), 1695-706, (2018). DOI: https://doi.org/10.1088/1748-605X/ab673b
  • [18] G. Hemamalini, V.R.G. Dev, Comprehensive review on electrospinning of starch polymer for biomedical applications, int. J. Biol. Macromol. 106, 712-8, (2018). DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.079
  • [19] G. Liu, Z. Gu, Y. Hong, L. Cheng, C. Li, Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications, J. Control. Release. 28, 252, 95-107, (2017). DOI: https://doi.org/10.1016/j.jconrel.2017.03.016
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25c2ac6f-de72-417a-a7ff-ea46bf235e48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.