PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Citrus Yield Response and Irrigation Water Use Efficiency under Partial Root Drying Irrigation in a Pilot Exploitation in the Triffa Plain (Eastern Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In our experiment we have studied the effects of partial root-zone drying (PRD) on plant physiological response, plant soil water dynamics, yield and fruit quality of mature clementine trees (Citrus clementina) during the irrigation seasons 2017 and 2018 in an orchard located in Triffa plain (north-east Morocco). Two irrigation treatments were applied: (i) full irrigation where trees were irrigated with enough water to replace 100% of crop evapotranspiration (ETc), and (ii) alternate partial root-zone drying (PRD) with trees irrigated at 75% ETc (applied on one side of the root-zone while the other side was kept dry, alternating the sides every week). Results show that PRD at 75% of crop water demand (ETc) decreased the fruit yield by 17% in 2017 and 7% in 2018 compared with the Full irrigation treatment and did not induce significant loss of crop yield. The PRD irrigation treatment, induces not only a reduction of the wetted soil volumes and transpiration rate, but also represented the highest Irrigation Water Use Efficiency (IWUE) with an increase of 11 and 21% for 2017 and 2018 respectively. Both fruit size and fruit weight decrease significantly in PRD treatment by 12–10% and 11–12% compared to Full irrigation respectively for 2017 and 2018. Titrable acidity (TA) and total soluble solids percentage (TSS) increased significantly in PRD fruit by 9–11% and 1.2–1.4% respectively for 2017 and 2018. Juice percentage decreased significantly in the first year for PRD treatment by 6% whereas in 2018 the PRD fruit had the highest juice percentage with significant difference of 3% compared to Full irrigation statically significant. Results show clear difference of rooting between irrigation strategies with an increase of the root number by the PRD treatment.
Twórcy
  • Laboratory for Improvement of Agricultural Production, Biotechnology and Environment (LAPABE), Faculty of Science, Mohammed Premier University, PB 717, 60000, BV M6, Oujda, Morocco
autor
  • Laboratory for Improvement of Agricultural Production, Biotechnology and Environment (LAPABE), Faculty of Science, Mohammed Premier University, PB 717, 60000, BV M6, Oujda, Morocco
autor
  • Laboratory for Improvement of Agricultural Production, Biotechnology and Environment (LAPABE), Faculty of Science, Mohammed Premier University, PB 717, 60000, BV M6, Oujda, Morocco
  • Laboratory for Improvement of Agricultural Production, Biotechnology and Environment (LAPABE), Faculty of Science, Mohammed Premier University, PB 717, 60000, BV M6, Oujda, Morocco
  • Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Science, Mohammed Premier University, PB 717, 60000, BV M6, Oujda, Morocco
Bibliografia
  • 1. Alemu S.T. 2020. Partial root zone drying an approach to increase water use efficiency of horticultural crops and chlorophyll fluorescence. Cogent Biology, 6(1), 1767016.
  • 2. Alonso A., Feltz N., Gaspart F., Sbaa M., Vanclooster M. 2019. Comparative assessment of irrigation systems’ performance: Case study in the Triffa agricultural district, NE Morocco.Agricultural Water Management, 212, 338-348.
  • 3. Alves Júnior J., Bandaranayake W., Parsons L.R., Evangelista A.W. 2012. Citrus root distribution under water stress grown in sandy soil of central Florida. Engenharia Agrícola, 32(6), 1109-1115.
  • 4. Bray E.A., Shih T.Y., Moses M.S., Cohen A., Imai R., Plant A.L. 1999. Water-deficit induction of a tomato H1 histone requires abscisic acid. Plant Growth Regulations, 29, 35-46.
  • 5. Campos H., Trejo C., Peña-Valdivia C.B., RamírezAyala C., Sánchez-García P. 2009. Effect of partial rootzone drying on growth, gas exchange, and yield of tomato (Solanum lycopersicum L.). Scientia Horticulturae, 120(4), 493-499.
  • 6. Consoli S., Stagno F., Roccuzzo G., Cirelli G.L., Intrigliolo F. 2014. Sustainable management of limited water resources in a young orange orchard.Agricultural Water Management, 132, 60-68.
  • 7. Consoli S., Stagno F., Vanella D., Boaga J., Cassiani G., Roccuzzo G. 2017. Partial root-zone drying irrigation in orange orchards: Effects on water use and crop production characteristics. European Journal of Agronomy, 82, 190-202.
  • 8. De la Hera M.L., Romero P., Gomez-Plaza E., Martinez A. 2007. Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions?. Agricultural water management, 87(3), 261-274.
  • 9. Dos Santos T.P., Lopes C.M., Rodrigues M.L., de Souza C.R., Ricardo-da-Silva J.M., Maroco J.P., Chaves M.M. 2007. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Scientia Horticulturae, 112(3), 321-330.
  • 10. Dos Santos T.P., Lopes C.M., Rodrigues M.L., de Souza C.R., Ricardo-da-Silva J.M., Maroco J.P., Chaves M.M. 2007. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Scientia Horticulturae, 112(3), 321-330.
  • 11. El-Ayachi M., El Mansouri L. (Eds.). 2018. Geospatial Technologies for Effective Land Governance. IGI Global.
  • 12. El-Sadek A. 2014. Water use optimisation based on the concept of Partial Rootzone Drying. Ain Shams Engineering Journal, 5(1), 55-62.
  • 13. FAO. 2013. (Food and Agriculture Organization of the United Nations); FAOSTAT Database (FAOSTAT, 2013)
  • 14. FAO. 2011. (Food and Agriculture Organization of the United Nations). The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW), Managing Systems at Risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London.
  • 15. FAO. 2017. (Food and Agriculture Organization of the United Nations). Water for sustainable food and agriculture a report produced for the G20 presidency of Germany.
  • 16. FAO. 2017. (Food and Agriculture Organization of the United Nations). Water pollution from agriculture: a global review Rome.
  • 17. Feltz N. 2016. Evaluation de l’efficience et de la performance des périmètres irrigués en transition : une méthodologie intégrée appliquée au cas de la plaine des Triffa au Maroc (Doctoral dissertation, UCL-Université Catholique de Louvain).
  • 18. Ghrab M., Gargouri K., Bentaher H., Chartzoulakis K., Ayadi M., Mimoun M.B., Psarras G. 2013. Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate. Agricultural Water Management, 123, 1-11.
  • 19. Goldhamer D.A., Salinas M., Crisosto C., Day K.R., Soler M., Moriana A. 2001. Effects of regulated deficit irrigation and partial root zone drying on late harvest peach tree performance. In V International Peach Symposium, 592, 343-350.
  • 20. Gowing D.J., Davies W.J., Jones H.G. 1993. A positive root sourced signal as an indicator of soil drying in apple, Malus domestica Borkh. J. Exp. Bot., 41, 1535-1540.
  • 21. Granier A. 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. In Annales des Sciences forestières. EDP Sciences. 42(2), 193-200.
  • 22. Gross D.C., Lichens-Park A., Kole C. (Eds.). 2014. Genomics of plant-associated bacteria. Springer, 283.
  • 23. Hutton R., Loveys B. 2011. A partial root zone drying irrigation strategy for citrus – effects on water use efficiency and fruit characteristics. Agric. Water Manag., 98, 1485–1496.
  • 24. INRA. 2017. Objectifs du programme de recherche à moyen terme de l’INRA PRMT 2017-2020, Division Scientifique, INRA Rabat (Ma), 90.
  • 25. Jones H.G. 1992. Plants and Microclimate: A quantitative Approach to Environmental Plant Physiology, 2nd Edition. Cambridge University Press, Cambridge.
  • 26. Jovanovic Z., Stikic R. 2018. Partial root-zone drying technique: from water saving to the improvement of a fruit quality. Frontiers in Sustainable Food Systems, 1, 3.
  • 27. Kang S., Zhang J. 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. Journal of experimental botany, 55(407), 2437-2446.
  • 28. Kang S., Hu X., Goodwin I., Jerie P. 2002. Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard. Scientia Horticulturae, 92(3-4), 277-291.
  • 29. Kang S., Hu X., Jerie P., Zhang J. 2003. The effects of partial rootzone drying on root, trunk sap flow and water balance in an irrigated pear (Pyrus communis L.) orchard. Journal of Hydrology, 280(1-4), 192-206.
  • 30. Kang S., Shi W., Cao H., Zhang J. 2002. Alternate watering in soil vertical profile improved water use efficiency of maize (Zea mays). Field crops research, 77(1), 31-41.
  • 31. Kirda C., Çetin M., Dasgan Y., Topçu S., Kaman H., Ekici B., Ozguven A.I. 2004. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural water management, 69(3), 191-201.
  • 32. Kirda C., Topaloğlu F., Topçu S., Kaman H. 2007. Mandarin yield response to partial root drying and conventional deficit irrigation. Turkish Journal of Agriculture and Forestry, 31(1), 1-10.
  • 33. Leib B.G., Caspari H.W., Redulla C.A., Andrews P.K., Jabro J.J. 2006. Partial rootzone drying and deficit irrigation of ‘Fuji’apples in a semi-arid climate. Irrigation science, 24(2), 85-99.
  • 34. Mary B., Vanella D., Consoli S., Cassiani G. 2019. Assessing the extent of citrus trees root apparatus under deficit irrigation via multi-method geo-electrical imaging. Scientific reports, 9(1), 1-10.
  • 35. Melgar J., Dunlop J., Syvertsen J. 2010. Growth and physiological responses of the citrus rootstock swingle citrumelo seedlings to partial rootzone drying and defcit irrigation. Te J. Agric. Sci., 148, 593–602.
  • 36. Mingo D.M., Theobald J.C., Bacon M.A., Davies W.J., Dodd I.C. 2004. Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology, 31(10), 971-978.
  • 37. Mossad A., Scalisi A., Bianco R.L. 2018. Growth and water relations of field-grown ‘Valencia’orange trees under long-term partial rootzone drying. Irrigation science, 36(1), 9-24.
  • 38. Noitsakis B., Chouzouri A., Papa L., Patakas A. 2016. Pomegranate physiological responses to partial root drying under field conditions. Emirates Journal of Food and Agriculture, 28. 1. 10.9755/ejfa.2016-04-343.
  • 39. Panigrahi P., Sharma R.K., Parihar S.S., Hasan M., Rana D.S. 2013. Economic analysis of drip‐irrigated Kinnow mandarin orchard under deficit irrigation and partial root zone drying. Irrigation and Drainage, 62(1), 67-73.
  • 40. Parvizi H., Sepaskhah A.R., Ahmadi S.H. 2014. Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard.Agricultural Water Management, 146, 45-56.
  • 41. Pérez-Pérez J.G., Dodd I.C., Botía P. 2012. Partial rootzone drying increases water-use efficiency of lemon Fino 49 trees independently of root-to-shoot ABA signalling. Functional Plant Biology, 39(5), 366-378.
  • 42. Pérez-Pérez J.G., Dodd I.C., Botía P. 2012. Partial rootzone drying increases water-use efficiency of lemon Fino 49 trees independently of root-to-shoot ABA signalling. Functional Plant Biology, 39(5), 366-378.
  • 43. Pérez-Pérez J.G., Navarro J.M., Robles J.M., Dodd I.C. 2018. Prolonged drying cycles stimulate ABA accumulation in Citrus macrophylla seedlings exposed to partial rootzone drying.Agricultural Water Management, 210, 271-278.
  • 44. Robinson G.W. 1922. A new method for the mechanical analysis of soils and other dispersions. The Journal of Agricultural Science, 12(3), 306-321.
  • 45. Rodríguez P., Mellisho C.D., Conejero W., Cruz Z.N., Ortuno M.F., Galindo A., Torrecillas A. 2012. Plant water relations of leaves of pomegranate trees under different irrigation conditions. Environmental and Experimental Botany, 77, 19-24.
  • 46. Ruiz H.A. 2005. Incremento da exatidão da análise granulométrica do solo por meio da coleta da suspensão (silte + argila). Revista Brasileira de Ciência do Solo, 29(2), 297-300.
  • 47. Santos M.R.D., Martinez M.A., Donato S.L., Coelho E.F. 2014. Fruit yield and root system distribution of’Tommy Atkins’ mango under different irrigation regimes. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(4), 362-369.
  • 48. Savić S., Liu F., Stikić R., Jacobsen S.E., Jensen C.R., Jovanović Z. 2009. Comparative effects of partial rootzone drying and deficit irrigation on growth and physiology of tomato plants. Archives of Biological Sciences, 61(4), 801-810.
  • 49. Sepaskhah A.R., Ahmadi S.H. 2010. A review on partial root-zone drying irrigation. International Journal of Plant Production, 4(4), 241-258.
  • 50. Shahabian M., Samar S.M., Talaie A., Emdad M.R., 2012. Response of orange trees to deficit irrigation strategies in the north of Iran. Arch. Agron. Soil Sci., 58(3), 267–276.
  • 51. Spreer W., Ongprasert S., Hegele M., Wünsche J.N., Müller J. 2009. Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes. Agricultural water management, 96(4), 574-584.
  • 52. Talluto G., Farina V., Volpe G., Bianco R.L. 2008. Effects of partial rootzone drying and rootstock vigour on growth and fruit quality of ‘Pink Lady’apple trees in Mediterranean environments. Australian Journal of Agricultural Research, 59(9), 785-794.
  • 53. UN. 2018. United Nations; Sustainable Development Goal 6 Synthesis Report 2018 on Water and Sanitation. New York.
  • 54. USAID. 2012. Compétitivité économique du Maroc : enquête sur les superficies cultivées dans le périmètre irrigué de la Moulouya.
  • 55. Wahbi S., Wakrim R., Aganchich B., Tahi H., Serraj R. 2005. Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate: I. Physiological and agronomic responses. Agriculture, Ecosystems & Environment, 106(2-3), 289-301.
  • 56. Zegbe J.A., Behboudian M.H., Clothier B.E. 2007. Reduced irrigation maintains photosynthesis, growth, yield, and fruit quality in ‘Pacific Rose™’Apple. Journal of sustainable agriculture, 30(2), 125-136.
  • 57. Zhang J., Davies W.J. 1991. Antitranspirant activity in the xylem sap of maize plants. J. Exp. Bot., 42, 317-321.
  • 58. Zhang J., Davies W.J. 1989. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant, Cell & Environment, 12(1), 73-81.
  • 59. Zheng H., Wang Q., Zhu X., Li Y., Yu G. 2014. Hysteresis responses of evapotranspiration to meteorological factors at a diel timescale: patterns and causes. Public Lib. Sci. PLoS ONE 9 (6), e98857.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25c0240e-eb7c-4313-8003-073c2e7ff238
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.