PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Temperature Effect on the Growth Rate and Physical Characteristics of SnO2 Thin Films Grown by Atomic Layer Deposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the various thin film coating techniques, atomic layer deposition (ALD) has features of good controllability of the thickness, excellent step-coverage in 3-dimensional object even in the sub-nm thickness range at the relatively low deposition temperature. In this study, SnO2 thin films were grown by ALD in the variation of substrate temperatures from 150 to 250°C. Even such a low temperature may influence on the growth kinetics of the ALD reaction and thus the physical characteristics of thin films, such as crystallinity, film density and optical band gap, etc. We observed the decrease of the growth rate with increasing substrate temperature, at the same time, the density of the film was decreased with increasing temperature. Steric hindrance effect of the precursor molecule was attributed to the inverse relationship of the growth temperature and growth rate as well as the film density. Optical indirect band gap energy (~3.6 eV) of the ALD-grown amorphous SnO2 films grown at 150°C was similar with that of the literature value, while slightly lower band gap energy (~3.4 eV) was acquired at the films grown at higher temperature.
Twórcy
autor
  • Seoul National University of Science and Technology, Seoul, Korea
autor
  • Seoul National University of Science and Technology, Seoul, Korea
autor
  • Seoul National University of Science and Technology, Seoul, Korea
autor
  • Seoul National University of Science and Technology, Seoul, Korea
Bibliografia
  • [1] G. Sberveglieri, Sensors and Actuators B 6, 239 (1992).
  • [2] D. W. Choi, W. J. Maeng, J. S. Park, Appl. Surf. Sci. 313, 585 (2014).
  • [3] S. I. Noh, H.-J. Ahn, D.-H. Riu, Ceramics International 38, 3735 (2012).
  • [4] M. M. Abdullah, M. H. Suhail, S. I. Abbas, Arch. Appl. Sci. Res. 4, 1279 (2012).
  • [5] M. Utriainen, K. Kovács, J. M. Campbell, L. Niinistö, F. Réti, J. Electrochem. Soc. 146, 189 (1999).
  • [6] Y. Wang, T. Brezesinski, M. Antonietti, B. Smarsly, ACS Nano 3, 1373 (2009).
  • [7] J. Heo, Y. Liu, P. Sinsermsuksakul, Z. Li, L. Sun, W. Noh, R. G. Gordon, J. Phys. Chem. C 115, 10277 (2011).
  • [8] C. J. Cho, M.-S. Noh, W. C. Lee, C. H. An, C.-Y. Kang, C. S. Hwang, S. K. Kim, J. Mater. Chem. C 5, 9405 (2017).
  • [9] C.-Y. Kim, D.-H. Riu, Thin Solid Films 519, 3081 (2011).
  • [10] J. L. Vossen, E. S. Poliniak, Thin Solid Films, 13, 281 (1972).
  • [11] N. H. Lee, S. Y. Yoon, D. H. Kim, S. K. Kim, B. J. Choi, Electronic Materials Lett. 13, 318 (2017).
  • [12] R. L. Puurunen, Chemical Vapor Deposition 9, 249 (2003).
Uwagi
EN
1. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1A09000809).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25bdfd81-3d6e-4b53-a81a-55a891e36549
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.