PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal resistance of GaAs/AlAs superlattices used in modern light-emitting diodes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Superlattices are used in modern light-emitting diodes to modify intentionally electron, phonon and/or photon transport within their volumes, which leads to their expected performance characteristics. In particular, superlattices may have a dramatic impact on device thermal properties. Superlattice thermal resistance is anisotropic and usually distinctly higher than its values in constituent bulk materials, which results from phonon reflections and/or phonon scatterings at numerous layer interfaces. In the present paper, thermal resistance of a typical superlattice of layer thicknesses neither much higher nor much lower than the phonon free path is discussed. Besides, as an important example, thermal resistance of the typical GaAs/AlAs superlattice is determined theoretically and compared with its measured values known from literature.
Twórcy
autor
  • Photonics Group, Institute of Physics, Technical University of Lodz, 219 Wólczańska Str., 90-924 Łódź, Poland
autor
  • Photonics Group, Institute of Physics, Technical University of Lodz, 219 Wólczańska Str., 90-924 Łódź, Poland
Bibliografia
  • 1. W. Nakwaski, “Principles of VCSEL designing”, Opto-Electron. Rev. 16, 18–26 (2008).
  • 2. D.A. Cahill, W.H. Ford, K.E. Goodson, G.D. Mahan, A.Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot, “Nanoscale thermal transport”, J. Appl. Phys. 93, 793–818 (2003).
  • 3. G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices”, Phys. Rev. B57, 14958–14973 (1996).
  • 4. F.X. Alvarez, J. Alvarez-Quintana, D. Jou, and J.J. Rodriguez-Viejo, “Analytical expression for thermal conductivity of superlattices”, Appl. Phys. 107, 0804303 (2010).
  • 5. E.T. Schwartz and R.O. Pohl, “Thermal boundary resistance”, Rev. Modern Phys. 61, 605–658 (1989).
  • 6. E. Gęsikowska and W. Nakwaski, “An impact of multi-layered structures of modern optoelectronic devices on their thermal properties”, Opt. Quantum Electron. 40, 205–216 (2008).
  • 7. M. Osiński and W. Nakwaski, “Effective thermal conductivity of 1.55-μm InGaAsP/InP vertical-cavity surface-emitting microlasers”, Electron. Lett. 29, 1015–1016, (1993).
  • 8. R.M. Mazo, “Theoretical studies on low temperature phenomena”, PhD Thesis, Yale University, 1985.
  • 9. R. Prasher, “Acoustic mismatch model for thermal contact resistance of van der Waals contacts”, Appl. Phys. Lett. 94, 041905 (2009).
  • 10. M. Szymański, “Calculation of the cross-plane thermal conductivity of a quantum cascade laser active region”, J. Phys. D: Appl. Phys. 44, 085101 (2011).
  • 11. H. Zhao and J.B. Freud, “Phonon scattering at a rough interface between two fcc lattices”, J. Appl. Phys. 105, 013515 (2009).
  • 12. F.X. Alvarez and D. Jou, “Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes”, Appl. Phys. Lett. 90, 083109 (2007).
  • 13. F. X. Alvarez and D. Jou, “Size and frequency dependence of effective thermal conductivity in nanosystems”, Appl. Phys. Lett., vol. 103, no. 9, p. 094321, 2008.
  • 14. A. Little, “The transport of heat between dissimilar solids at low temperatures”, Can. J. Phys. 37, 334–349 (1959).
  • 15. W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, and D.S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picoseconds optical pump-and-probe technique”, Phys. Rev. B59, 8105–8113 (1999).
  • 16. M.S. Vitiello, G. Scamarcio, and V. Spagnolo, “Temperature dependence of thermal conductivity and boundary resistance in THz quantum cascade lasers”, IEEE J. Sel. Topics Quantum Electron. 14, 431–435 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25b9e727-926e-412b-abd8-1673d145ca9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.