Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We examine a special modal logic which is a normal extension of the Brouwer modal logic. It is determined by linearly ordered chains of clusters and the relation between clusters is reflexive and symmetric. The appropriate axiomatization of this logic is proposed in the papers [11] and [12]. There is also proved that all normal extensions of the investigated logic are Kripke complete and have f.m.p. Unfortunately, the cardinality of this family is continuum [13]. One may imagine that the structure of the lattice of these extensions is immensely complex. Then we use the technics of splitting to characterize this lattice and to describe some quite simple fragments. We characterize all the logics that split the lattice.
Rocznik
Tom
Strony
31--61
Opis fizyczny
Bibliogr. 21 poz.,. rys.
Twórcy
autor
- Opole University of Technology, Institute of Mathematics and Physics, ul. Sosnowskiego 31, 45-272 Opole, Poland
Bibliografia
- [1] Bull, R. (1966). That all normal extensions of S4.3 have the finite model property. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 12: 314–344, DOI: 10.1002/malq.19660120129.
- [2] Byrd, M., Ullrich, D. (1977). The extensions of BAlt3. Journal of Philosophical Logic 6: 109–117, DOI: 10.1007/BF00262052.
- [3] Byrd, M. (1978). The extensions of BAlt3 - revisited. Journal of Philosophical Logic 7: 407–413, DOI: 10.1007/BF00245937.
- [4] Chagrow, A., Zakharyaschev, M. (1997) Modal Logic. Oxford Logic Guides 35, ISBN-13: 978-0198537793.
- [5] Fine, K. (1971) The logics containing S4.3. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 17: 371–376, DOI: 10.1002/malq.19710170141.
- [6] Jankov, V. A. (1969) Conjunctively indecomposable formulas in propositional calculi, Izv, Akad. Nauk USSR Ser. Mat. 33: 18–38, DOI: 10.1070/IM1969v003n01ABEH000744.
- [7] Kostrzycka, Z. (2008) On non-compact logics in NEXT(KTB), Mathematical Logic Quarterly 54 (6): 617–624, DOI: 10.1002/malq.200710056.
- [8] Kostrzycka, Z. (2009) On a finitely axiomatizable Kripke incomplete logic containing KTB, Journal of Logic and Computation 19 (6): 1199–1205, DOI: 10.1093/logcom/ exp020.
- [9] Kostrzycka, Z. (2010) On Modal Systems in the Neighbourhood of the Brouwer Logic, Acta Universitatis Wratislaviensis 3238, Logika 25, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław, ISBN 978-83-229-3119-6.
- [10] Kostrzycka, Z. (2011) On the family of logics determined by parasol-frames, Bulletin of the Section of Logic 40 (1/2): 69-81, ISSN 0138-0680.
- [11] Kostrzycka, Z. (2014) On linear Brouwerian logics, Mathematical Logic Quarterly 60 (4-5): 304–313, DOI: 10.1002/malq.201200075.
- [12] Z. Kostrzycka, Correction of the article: On linear Brouwerian logics, manuscript is avaliable at http://z.kostrzycka.po.opole.pl/publikacje/correctionkostrzycka4.pdf. It will be submitted.
- [13] Kostrzycka, Z., Miyazaki, Y. Normal modal logics determined by aligned clusters. Studia Logica 2016, DOI: 10.1007/s11225-016-9679-7.
- [14] Kowalski, T., Miyazaki, Y. (2008) All splitting logics in the lattice NEXT(KTB), Trends in Logic 28: 53–67, in: "Towards Mathematical Philosophy", Springer.
- [15] Kracht, M. (1990) An almost general splitting theorem for modal logics, Studia Logica 49: 455-470, DOI: 10.1007/BF00370158.
- [16] Makinson, D. C. (1971) Some embedding theorems for modal logics, Notre Dame of Formal Logic 12: 252–254, DOI: 10.2307/2272697.
- [17] McKenzie, R. (1972) Equational bases and non-modular lattice varieties, Transactions of the American Mathematical Society, 174: 1-43, DOI: https://doi.org/10.1090/S0002-9947-1972-0313141-1.
- [18] Miyazaki, Y. (2005) Normal modal logics containing KTB with some finiteness conditions, Advances in Modal Logic 5: 171–190, DOI: 10.1007/s11225-007-9056-7.
- [19] Y. Miyazaki, Y. (2007) A splitting logic in NEXT(KTB), Studia Logica 85, 399–412, DOI: 10.1007/s11225-007-9039-8.
- [20] Rautenberg, W. (1980) Splitting lattices of logics, Archiv für mathematische Logik 20, 155–159.
- [21] Thomas, I. (1964) Modal systems in the neighborhood of T, Notre Dame J. Formal Logic 5: 59–61, DOI:10.1305/ndjfl/1093957739.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25b5b7fa-7401-4b83-a174-8a2eff92d154