PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Liquid Glass Mixtures with Improved Knocking-Out Ability in Castings Production for Railway Transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of the use of the Russian materials (liquid glass and softening additives) has been made in accordance with the modern requirements for use in the technological processes of casting as binding materials in the production of large-sized steel railway casting. The reasons for poor knockout of liquid glass mixtures have been investigated. A complex action softening additive has been recommended for a better knocking-out ability. This solution provides a softening effect at the points of maximum formation of the liquid glass matrix strength in the processes of polymorphic transformation of the material under the influence of elevated temperatures as the result of filling the mold cavity by the melt. It has been shown that the use of additives of complex action leads to the decrease in the specific work of the knockout by four – seven times depending on the composition of the mixture and the design features of the casting. Experimental-industrial tests of the proposed method for softening the liquid glass mixtures have been made and the "Front Buffer Stop" casting has been made (for the rolling stock of locomotives and railway wagons). The tests confirmed the effectiveness and expediency of implementation of new liquid glass mixtures with softening additives in conditions of foundry enterprises.
Rocznik
Tom
Strony
27--32
Opis fizyczny
Bibliogr. 29 poz., fot., tab., wykr.
Twórcy
autor
  • Platov South-Russian State Polytechnic University, Russia
autor
  • Bauman Moscow State Technical University, Russia
autor
  • Wuhan Textile University, China
  • National University of Science and Technology «MISIS», Russia
autor
  • Bauman Moscow State Technical University, Russia
autor
  • Novocherkassk Electric Locomotive Plant, Russia
autor
  • Vladimir State University named after Alexander and Nikolay Stoletovs, Russia
Bibliografia
  • [1] Seetharaman, S. (2005). Fundamentals of Metallurgy, Woodhead Publishing.
  • [2] Holtzer, M., Górny, M., Dańko, R. (2015). Microstructure and properties of ductile iron and compacted graphite iron castings. Springer International Publishing.
  • [3] Integrated Pollution Prevention and Control Reference Document on Best Available Techniques in the Smitheries and Foundries Industry (2005). European Commission, 363.
  • [4] Ferrell, R. & Scholz, R. (2018). Tracking down respirable silica exposure. Modern Casting. 2, 27-30.
  • [5] Pylkas, E. & Scholz, R. (2018). Real-time monitoring for silica exposure analysis. Modern Casting. 1, 30-34.
  • [6] Anthonia, E.E. & Philip, H.S. (2015). An overview of the applications of furfural and its derivatives. International Journal of Advanced Chemistry, 3(2), 42-47.
  • [7] Serghini, A. (2011). The future of organic foundry binders in Europe. Przegląd Odlewnictwa. 11-12, 548-553.
  • [8] Dobosz, St.M., Major-Gabryś, K. & Grabarczyk A. (2015) New materials in the production of moulding and core sands. Archives of Foundry Engineering. 15(4), 25-28.
  • [9] Löfstedt, H., Westberg, H., Seldén, A.I., Lundholm, C. & Svartengren, M. (2009). Respiratory symptoms and lung function in foundry workers exposed to low molecular weight isocyanates. American Journal of Industrial Medicine. 52, 455-463.
  • [10] Löfstedt, H., Westberg, H., Seldén, A.I., Rudblad, S., Bryngelsson, I.L., Ngo, Y. & Svartengren, M. (2011). Nasal and ocular effects in foundry workers using the hot box method. Journal of Occupational and Environmental Medicine. 53, 43-48.
  • [11] Löfstedt, H., Westberg, H., Seldén, A.I., Bryngelsson, I.L. & Svartengren, M. (2011). Respiratory symptoms and lung function in foundry workers using the hot box method – a 4-year follow-up. Journal of Occupational and Environmental Medicine. 53, 1425-1429.
  • [12] Dobosz, S., Jelínek, P. & Major-Gabrys, K. (2011). Development tendencies of moulding and core sands. China Foundry. 8(4), 438-446.
  • [13] Zaretskiy, L. (2019). Microsilica in Sodium Silicate Bonded Sands. International Journal of Metalcasting. 13(1), 58-73.
  • [14] Al-Saraireh, F.M. (2018). An assessment of the efficiency of utilizing complex modifiers for softening the liquid-glass mixtures to improve iron and steel casting. ARPN Journal of Engineering and Applied Sciences. 13(9), 2018, 3231-3235.
  • [15] Holtzer, M., Dańko, R., Kubecki, M., Żymankowska-Kumon, S., Bobrowski, A., Kmita, A., Górny, M. (2014). Influence of the reclaim addition to the moulding sand with furan resin on the emission of toxic gases at high temperature, In: 71st World Foundry Congress, Bilbao 19-21 May 2014, 410 р.
  • [16] Burian, A. (2009). New ecological binder systems. Slévárenstvi. 57, 6.
  • [17] Editorial (2018). 2018 Forecast: U.S. Casting sales to reach $33 billion. Modern Casting. 1, 22-27.
  • [18] Konan, K.L., Peyratout, C. & Smith, A. (2009). Comparison of surface properties between kaolin and metakaolin in concentrated lime solutions. Journal of Colloid and Interface Science. 339(1), 103-109.
  • [19] Allen, J.F. (2014). Sodium silicate and hydrolyzed collagen as a hybrid core binder for pollution prevention in foundries. Master Thesis, Graduate School College of Engineering, Pennsylvania State University.
  • [20] Grabowska, B., Holtzer, M., Dańko, R., Górny, M., Bobrowski, A. & Olejnik, E. (2013). New BioCo binders containing biopolymers for foundry industry. Metalurgija. 52(1), 47-50.
  • [21] Kmita, A., & Hutera, B. (2012). Effect of water glass modification on its viscosity and wettability of quartz grains. Archives of Foundry Engineering. 12(3), 59-62.
  • [22] Kmita, A., Hutera, B. & Drożyński, D. (2010). Effect of sodium silicate modification on selected properties of loose self-setting sands. Archives of Foundry Engineering. 10(4), 93-96.
  • [23] Hutera, B., Stypuła, B., Kmita, A. & Nowicki, P. (2011). Modification of water glass with colloidal slurries of metal oxides. Archives of Foundry Engineering. 11(4), 51-54.
  • [24] Chaisan, W., Yimnirun, R. & Ananta, S. (2008). Preparation and characterization of ceramic nanocomposites in the PZT-BT system. Ceramics International. 35(1), 1-4.
  • [25] Darezereshki, E., Alizadeh, M., Bakhtiari, F., Schaffie, M. & Ranjbar, M. (2011). A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Applied Clay Science. 54(1), 107-111.
  • [26] Radayev, S., Seleznyova, O., Ilyukhin, K., Ivanov, K. & Forosevich, N. (2016). The problem of structurization of liquid glass. Materials Science Forum. 871, 90-95.
  • [27] Sarsenbay, G., Kovzalenko, V.A., Sadykov, N.M.-K. & Kaldybaeva, A.O. (2016). Production of the modified liquid glass in the processing of kaolinitic clay. World Journal of Engineering and Technology. 4, 151-157.
  • [28] Matsushita, Y. (2015). Conversion of technical lignins to functional materials with retained polymeric properties. Journal of Wood Science. 61(3), 230-250.
  • [29] Grabarczyk, A., Dobosz, St. M., Kusiński, J. & Major-Gabryś, K. (2018). The tendency of moulding sands to generate core cracks. Archives of Foundry Engineering. 18(1), 157-161.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25b0b5ab-a6cc-4935-a855-bf0760fac8ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.