PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption in Perfect Mixing Tank – Comparison of Exact and Approximate Kinetic Models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Periodic adsorption in a perfect mixing tank of a limited volume was considered. It was assumed that the adsorption rate is limited by diffusion resistance in a pellet. The approximate model of diffusion kinetics based on a continued fraction approximation was compared with the exact analytical solution. For the approximate model an algorithm was developed to determine a temporal variation of the adsorbate concentration in the pellet. The comparison was made for different values of the adsorbent load factor. In the numerical tests different shapes of pellets were considered. Both the numerical tests as well as our own experimental results showed that the approximate model provides results that are in good agreement with the exact solution. In the experimental part of this work adsorption of p-nitrophenol and acetic acid from aqueous solutions on cylindrical pellets of activated carbon was conducted.
Rocznik
Strony
277--291
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland
autor
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland
autor
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • 1. Chern J.-M., Chien Y.-W., 2002. Adsorption of nitrophenol onto activated carbon: Isotherms and breakthrough curves. Water Research, 36, 647-655. DOI: 10.1016/S0043-1354(01)00258-5.
  • 2. Crank J., 1956. The Mathematics of Diffusion. Oxford, Clarendon Press, 53-54, 70-71, 88-89.
  • 3. Do D.D., 1998. Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, 804-805.
  • 4. Glueckauf E., 1955. Theory of chromatography. Part 10 − Formula for diffusion into spheres and their application to chromatography. Trans. Faraday Soc., 51, 1540-1551.
  • 5. Haerifar M., Azizian S., 2013. Mixed surface reaction and diffusion-controlled kinetic model for adsorption at the solid/solution interface. J. Phys. Chem. C, 117, 8310-8317. DOI: 10.1021/jp401571m.
  • 6. Kupiec K., Gwadera M., 2013. Approximation for unsteady state diffusion and adsorption with mass transfer resistance in both phases. Chem. Eng. Process., 65, 76-82. DOI: 10.1016/j.cep.2012.12.003.
  • 7. Lee J., Kim D.H., 2011. Simple high-order approximations for unsteady-state diffusion, adsorption and reaction in a catalyst: A unified method by a continued fraction for slab, cylinder and sphere geometries. Chem. Eng. J., 173, 644–650. DOI: 10.1016/j.cej.2011.08.029.
  • 8. Petrus R., Aksielrud G.A., Gumnicki J.M., Piątkowski W., 1998. Wymiana masy w układzie ciało stałe-ciecz. OWPR Rzeszów, 273.
  • 9. Płaziński W., Dziuba J., Rudziński W., 2013. Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption, 19, 1055-1064. DOI: 10.1007/s10450-013-9529-0.
  • 10. Suzuki M., 1990. Adsorption Engineering. Elsevier, 106.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25ad8940-f455-45da-932e-59c8a565c7cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.