Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The method of moments enables effective magnetostatic modelling of thin layers, where thickness of the layer should be considered. This paper presents the non-linear extension for this method of modelling. An initial magnetization curve, necessary for modelling, was reconstructed from saturation hysteresis loops on the basis of the Jiles–Atherton model. Finally, the set of non-linear equations was stated, and an example of solution for a square-shaped magnetic thin layer is presented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
27--35
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wz.
Twórcy
autor
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology sw. Andrzeja Boboli 8, 02-525 Warsaw, Poland
Bibliografia
- [1] Chadebec O., Coulomb J.-L., Janet F., A review of magnetostatic moment method, IEEE Transactions on Magnetics, vol. 42, pp. 515–520 (2006).
- [2] Harrington R.F., Field Computation by Moment Methods, New York, IEEE Press (1993).
- [3] Szewczyk R., Thin layer oriented magnetostatic calculation module for ELMER FEM, based on the method of the moments, 22nd International conference Applied Physics of Condensed Matter 2016, Strybskie Pleso, Slovakia (2016).
- [4] Mesquita R., Bastos J.P., An incomplete gauge formulation for 3D nodal finite element magnetostatics, IEEE Transactions on Magnetics, vol. 28, pp. 1044–1047 (1992).
- [5] Kubik J., Pavel L., Ripka P., PCB racetrack fluxgate sensor with improved temperature stability, Sensors and Actuators A: Physical, vol. 130–131, pp. 184–188 (2006).
- [6] Frydrych P., Szewczyk R., Salach J., Trzcinka K., Two-Axis Miniature Fluxgate Sensors, IEEE Transaction on Magnetics, vol. 48, pp. 1485–1488 (2012).
- [7] Chadebec O., Coulomb J.-L., Bongiraud J.-P., Cauffet G., Le Thiec P., Recent improvements for solving inverse magnetostatic problem applied to thin shells, IEEE Transactions on Magnetics, vol. 38, pp. 1005–1008 (2002).
- [8] Szewczyk R., Technical B-H Saturation Magnetization Curve Models for SPICE, FEM and MoM Simulations, Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 10, pp. 3–8 (2016).
- [9] Roubal Z., Smejkal V., Determination of parameters in the Jiles–Atherton model for measured hysteresis loops, 9th International Conference MEASUREMENT 2013, Smolenice, Slovakia (2013).
- [10] Izydorczyk J., Extraction of Jiles and Atherton parameters of ferrite from initial magnetization curves, Journal of Magnetism and Magnetic Materials, vol. 302, pp. 517–528 (2006).
- [11] Jiles D.C., Atherton D.L., A model of ferromagnetic hysteresis, Journal of Magnetism and Magnetic Materials, vol. 611986, pp. 48–60 (1986).
- [12] Jiles D.C., Atherton, D.L., Theory of ferromagnetic hysteresis, Journal of Applied Physics, vol. 55, pp. 2115–2121 (1984).
- [13] Chwastek K., Szczygłowski J., Identification of a hysteresis model parameters with genetic algorithms, Mathematics and Computers in Simulation, vol. 71, pp. 206–2011 (2006).
- [14] Szewczyk R., Computational problems connected with Jiles–Atherton model of magnetic hysteresis, Advances in Intelligent Systems and Computing, Springer, vol. 267, pp. 275–283 (2014).
- [15] Biedrzycki R., Jackiewicz D., Szewczyk R., Reliability and Efficiency of Differential Evolution Based Method of Determination of Jiles–Atherton Model Parameters for X30CR13 Corrosion Resisting Martensitic Steel, Journal of Automation Mobile Robotics and Intelligent Systems vol. 8, pp. 63–68 (2014).
- [16] Szewczyk R., Generalization of magnetostatic Method of moments for thin layers with regular rectangular grids, Acta Physica Polonica A, vol. 131, pp. 845–847 (2017).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25ad877b-d6bc-48b9-bfee-7e0fecaf6bc7