PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes of physical properties of thermal damaged sandstone with time lapse

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding the change of physical properties of thermal damaged rock with time lapse in high temperature engineering plays an important role in the prediction of engineering life and the prevention of engineering disasters. In order to study the effect of time lapse on the physical properties of heat damaged sandstone, the sandstone was heated to the target temperature and cooled, and its resistivity, Leeb hardness, volume and mass were measured. The values of these parameters should be measured again after placing the thermally damaged sandstone for 3, 6 and 9 months. The results show that, after being placed for 3 months, the quality of heat damaged sandstone increased at all test temperatures. At 200 °C, 400 °C, 600 °C and 900 °C, the resistivity of heat damaged sandstone decreases, and there is no obvious change in Leeb hardness and volume. At 800 °C, the resistivity of thermally damaged sandstone increases, the Leeb hardness decreases and the volume increases. After being placed for 6 months, the resistivity, Leeb hardness and volume of thermally damaged sandstone did not change at all test temperatures, but the mass of thermally damaged sandstone increased at 800 °C and 900 °C. After being placed for 9 months, the resistivity, Leeb hardness, volume and mass have no obvious change at all test temperatures.
Czasopismo
Rocznik
Strony
1193--1202
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
  • School of Resources and Earth Sciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People’s Republic of China
  • School of Resources and Earth Sciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People’s Republic of China
autor
  • School of Resources and Earth Sciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People’s Republic of China
  • School of Resources and Earth Sciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People’s Republic of China
Bibliografia
  • 1. Cai M, Brown ET (2017) Challenges in the mining and utilization of deep mineral resources. Engineering 3(4):432–433. https://doi.org/10.1016/J.ENG.2017.04.027
  • 2. Dong Z, Sun Q, Zhang W, Xu C (2020) Thermal damage of granite after thermal shock cycle. Géotech Lett 10(2):168–173. https://doi.org/10.1680/jgele.19.00062
  • 3. Ersoy H, Kolayli H, Karahan M, Karahan HH, Sunnetci MO (2019) Effect of thermal damage on mineralogical and strength properties of basic volcanic rocks exposed to high temperatures. Bull Eng Geol Env 78(3):1515–1525. https://doi.org/10.1007/s10064-017-1208-z
  • 4. Fan LF, Gao JW, Du XL, Wu ZJ (2020) Spatial gradient distributions of thermal shock-induced damage to granite. J Rock Mech Geotech Eng 12(5):917–926. https://doi.org/10.1016/j.jrmge.2020.05.004
  • 5. Gautam PK, Verma AK, Jha MK, Sharma P, Singh TN (2018) Effect of high temperature on physical and mechanical properties of Jalore granite. J Appl Geophys 159:460–474. https://doi.org/10.1016/j.jappgeo.2018.07.018
  • 6. Ge ZL, Sun Q (2021) Acoustic emission characteristics of gabbro after microwave heating. Int J Rock Mech Min Sci 138:104616. https://doi.org/10.1016/j.ijrmms.2021.104616
  • 7. Geng JS, Sun Q, Zhang YC, Zhang YL (2017) Analysis of thermally-induced transformations of silica rocks after high temperature heat treatment. Acta Geodyn et Geomater 14(3):187. https://doi.org/10.13168/AGG.2017.0016
  • 8. Geng JS, Sun Q, Zhang YC, Chao LW, Lü C, Zhang YL (2018) Temperature dependence of the thermal diffusivity of sandstone. J Petrol Sci Eng 164:110–116. https://doi.org/10.1016/j.petrol.2018.01.047
  • 9. Guo TK, Tang SJ, Liu S, Liu XQ, Zhang W, Qu GZ (2020) Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress. Eng Fract Mech 240:107350. https://doi.org/10.1016/j.engfracmech.2020.107350
  • 10. Guo P, Wu SC, Zhang G, Chu CQ (2021) Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions. Int J Rock Mech Min Sci 144:104820. https://doi.org/10.1016/j.ijrmms.2021.104820
  • 11. Heuze FE (1983) High-temperature mechanical, physical and thermal properties of granitic rocks: a review. Int J Rock Mech Min Sci Geomech Abstr 20(1):3–10. https://doi.org/10.1016/0148-9062(83)91609-1
  • 12. Hu JJ, Sun Q, Pan XH (2018) Variation of mechanical properties of granite after high-temperature treatment. Arab J Geosci 11(2):43. https://doi.org/10.1007/s12517-018-3395-8
  • 13. Hu JJ, Xie HP, Sun Q, Li CB, Liu GK (2021) Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action. Int J Min Sci Technol 31(5):843–852
  • 14. Junique T, Vazquez P, Benavente D, Thomachot-Schneider C, Geraud Y (2021) Experimental investigation of the effect of quenching cycles on the physico-chemical properties of granites. Geothermics 97:102235. https://doi.org/10.1016/j.geothermics.2021.102235
  • 15. Leeb D (1979) Dynamic hardness testing of metallic materials. NDT International 12(6):274–278. https://doi.org/10.1016/0308-9126(79)90087-7
  • 16. Liu XS, Lu WL, Li M, Zeng ND, Li T (2020) The thermal effect on the physical properties and corresponding permeability evolution of the heat-treated sandstones. Geofluids 2020:8838325. https://doi.org/10.1155/2020/8838325
  • 17. Lv YX, Yuan C, Zhu XH, Wei P, Gan Q, Li HB (2021) Influence of permeability anisotropy on rock damage and heat transfer in geothermal reservoir. Arab J Geosci 14(13):1293. https://doi.org/10.1007/s12517-021-07705-z
  • 18. Mahanta B, Singh TN, Ranjith PG (2016) Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol 210:103–114. https://doi.org/10.1016/j.enggeo.2016.06.008
  • 19. Shen YJ, Hou X, Yuan JQ, Xu ZH, Hao JS, Gu LJ, Liu ZY (2020) Thermal deterioration of high-temperature granite after cooling shock: multiple-identification and damage mechanism. Bull Eng Geol Env 79(10):5385–5398. https://doi.org/10.1007/s10064-020-01888-7
  • 20. Shen YJ, Yuan JQ, Hou X, Hao JS, Bai ZP, Li T (2021) The strength changes and failure modes of high-temperature granite subjected to cooling shocks. Geomech Geophys Geo-Energy Geo-Resour 7(1):23. https://doi.org/10.1007/s40948-020-00214-5
  • 21. Sirdesai NN, Singh TN, Gamage RP (2017) Thermal alterations in the poro-mechanical characteristic of an Indian sandstone-a comparative study. Eng Geol 226:208–220. https://doi.org/10.1016/j.enggeo.2017.06.010
  • 22. Sun Q, Hu JJ (2021) Effects of heating on some physical properties of granite, Shandong China. J Appl Geophys 193:104410. https://doi.org/10.1016/j.jappgeo.2021.104410
  • 23. Sun Q, Zhang WQ, Su TM, Zhu SY (2016) Variation of wave velocity and porosity of sandstone after high temperature heating. Acta Geophys 64(3):635–648
  • 24. Sun H, Sun Q, Deng W, Zhang W, Lü C (2017) Temperature effect on microstructure and P-wave propagation in Linyi sandstone. Appl Therm Eng 115:913–922. https://doi.org/10.1016/j.applthermaleng.2017.01.026
  • 25. Sun C, Jin CZ, Wang LG, Ao YH, Zhang JJ (2022) Creep damage characteristics and local fracture time effects of deep granite. Bull Eng Geol Env 2022:79. https://doi.org/10.1007/s10064-022-02578-2
  • 26. Tian H, Kempka T, Xu NX, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45:1113–1117. https://doi.org/10.1007/s00603-012-0228-z
  • 27. Vagnon F, Colombero C, Colombo F, Comina C, Ferrero AM, Mandrone G, Vinciguerr SC (2019) Effects of thermal treatment on physical and mechanical properties of Valdieri marble-NW Italy. Int J Rock Mech Min Sci 116:75–86. https://doi.org/10.1016/j.ijrmms.2019.03.006
  • 28. Vagnon F, Colombero C, Comina C, Ferrero AM, Mandrone G, Missagia R, Vinciguerra SC (2021) Relating physical properties to temperature induced damage in carbonate rocks. Géotech Lett 11(2):147–157. https://doi.org/10.1680/jgele.20.00122
  • 29. Viles HA (2012) Linking weathering and rock slope instability: non-linear perspectives. Earth Surf Proc Land 38(1):62–70. https://doi.org/10.1002/esp.3294
  • 30. Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth, Parts a/b/c 28(9–11):499–509. https://doi.org/10.1016/S1474-7065(03)00069-X
  • 31. Xu T, Zhou GL, Heap MJ, Zhu WC, Chen CF, Baud P (2017) The influence of temperature on time-dependent deformation and failure in granite: a mesoscale modeling approach. Rock Mech Rock Eng 50(9):2345–2364. https://doi.org/10.1007/s00603-017-1228-9
  • 32. Yang DM, Sarhosis V, Sheng Y (2014) Thermal–mechanical modelling around the cavities of underground coal gasification. J Energy Inst 87:321–329. https://doi.org/10.1016/j.joei.2014.03.029
  • 33. Yang SQ, Ranjith PG, Jing HW, Tian WL, Ju Y (2017) An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197. https://doi.org/10.1016/j.geothermics.2016.09.008
  • 34. Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47(1):94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014
  • 35. Yin TB, Zhuang DD, Li Q, Tan X, Wu Y (2021) Effect of oxygen on damage mechanism and mechanical properties of sandstone at high temperature. Bull Eng Geol Env 80(8):6047–6064. https://doi.org/10.1007/s10064-021-02317-z
  • 36. Yu JD, Lee JB, Yoon HK (2021) Effects of rock weathering on guided wave propagation in rock bolts. Tunn Undergr Space Technol 115:104069. https://doi.org/10.1016/j.tust.2021.104069
  • 37. Zhang Y, Zhang X, Zhao YS (2005) Process of sandstone thermal cracking. Chin J Geophys 48(3):656–659. https://doi.org/10.1002/cjg2.706
  • 38. Zhang WQ, Sun Q, Hao SQ, Geng JS, Lv C (2016) Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng 98(5):1297–1304. https://doi.org/10.1016/j.applthermaleng.2016.01.010
  • 39. Zhang WQ, Sun Q, Zhu SY, Hao SQ (2017) The effect of thermal damage on the electrical resistivity of sandstone. J Geophys Eng 14(2):255–261. https://doi.org/10.1088/1742-2140/aa5a22
  • 40. Zhang YL, Zhao GF, Li Q (2020) Acoustic emission uncovers thermal damage evolution of rock. Int J Rock Mech Min Sci 132:104388. https://doi.org/10.1016/j.ijrmms.2020.104388
  • 41. Zhang B, Tian H, Dou B, Zheng J, Chen J, Zhu ZN, Liu HW (2021a) Macroscopic and microscopic experimental research on granite properties after high-temperature and water-cooling cycles. Geothermics 93:102079. https://doi.org/10.1016/j.geothermics.2021.102079
  • 42. Zhang WQ, Shi ZJ, Wang ZQ, Zhang ST (2021b) Identifying critical failure information of thermal damaged sandstone through acoustic emission signal. J Geophys Eng 18(4):558–566. https://doi.org/10.1093/jge/gxab035
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25ac7538-9d2e-4a0c-8256-410910d875cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.