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Abstrat. In the presented paper we study some properties of preponderantly

ontinuous funtions and funtions satisfying the property A1. For any family F of

real-valued funtions we de�ne MAXF = {g : max{f, g} ∈ F for all f ∈ F} and

MINF = {g : min{f, g} ∈ F for all f ∈ F}. The aim of the paper is to �nd MINF
for two disussed lasses of funtions.

1. Preliminaries

Let R, N be the set of real numbers and natural numbers, respetively. Next,

let I denote a losed interval, U any open subset of R and Int(A) is the interior
of a set A ⊂ R in the natural metri. Let λ stand for Lebesgue measure in R.

For eah measurable set E ⊂ R we de�ne the lower and upper density of E at

x0 ∈ R by:

d (E, x0) = lim inf
λ(I)→0,x0∈I

λ(I∩E)
λ(I) and d (E, x0) = lim sup

λ(I)→0,x0∈I

λ(I∩E)
λ(I) .

If d (E, x0) = d (E, x0), we denote this ommon value by d(E, x0) and all it

the density of E at x0. In a similar way, we also de�ne the one-sided lower and

upper density of the set E at the point x0: d+ (E, x0), d− (E, x0), d
+

(E, x0)

and d
−

(E, x0). It is easy to hek that d (E, x0) = min{ d+ (E, x0) , d− (E, x0)}

and d (E, x0) = max{ d
+

(E, x0) , d
−

(E, x0)}. If d+ (E, x0) = d
+

(E, x0)

(d− (E, x0) = d
−

(E, x0)), then we denote this ommon value by d+(E, x0)
(d−(E, x0)) and all it the right (the left) density of E at x0.

There are a few nonequivalent de�nitions of preponderant density and pre-

ponderant ontinuity [3]. We will use the following.
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De�nition 1. [1, 3] A point x0 ∈ R is said to be the point of preponderant

density in Denjoy sense of a measurable set E ⊂ R if d (E, x0) > 1
2 .

Similarly, we an de�ne the preponderant density in Denjoy sense of a mea-

surable set E ⊂ R at the right and at the left. Moreover, a point x0 ∈ R is

the point of preponderant density in Denjoy sense of a measurable set E ⊂ R

i� it is the point of preponderant density in Denjoy sense of the measurable

set E at the right and at the left.

De�nition 2. [1, 3] A funtion f : U → R is said to be preponderantly on-

tinuous in Denjoy sense at x0 ∈ U if there exists a measurable set E ⊂ U

ontaining x0 suh that d (E, x0) > 1
2 and f|E is ontinuous at x0. A funtion

f : U → R is said to be preponderantly ontinuous in Denjoy sense if it is

preponderantly ontinuous in Denjoy sense at eah point x0 ∈ U . The lass

of all funtions whih are preponderantly ontinuous in Denjoy sense will be

denoted by PD.

Grande [2] de�ned a property of real funtions alled the property A1.

Based on this, we may de�ne a similar property, whih extends the notion of

preponderant ontinuity.

De�nition 3. [2, 3] A funtion f : U → R is said to have the property A1 in

Denjoy sense at x0 ∈ U if there exist measurable sets E1 ⊂ U and E2 ⊂ U

ontaining x0 suh that x0 is the point of preponderant density in Denjoy sense

of both sets E1 and E2, f|E1
is upper semi-ontinuous at x0 and f|E2

is lower

semi-ontinuous at x0. A funtion f : U → R has the property A1 in Denjoy

sense if it has the property A1 in Denjoy sense at eah x0 ∈ U . The lass of

all funtions whih have the property A1 in Denjoy sense will be denoted by

GPD.

Corollary. PD ⊂ GPD.

2. Auxiliary lemmas

We will present some known fats and the useful lemma.

Theorem 1. [3, Corollary 9 ] GPD ⊂ B1 and PD ⊂ B1, where B1 is the set

of Baire lass 1 funtions.

Theorem 2. [3, Theorem 2 ]

(i) A measurable funtion f : U → R is preponderantly ontinuous in Denjoy

sense at x0 ∈ U i� lim
n→∞

d
(

{x ∈ U : |f(x) − f(x0)| < 1
n
}, x0

)

> 1
2 ,
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(ii) A measurable funtion f : U → R has the property A1 in Denjoy sense

at x0 ∈ U i� lim
n→∞

d
(

{x ∈ U : f(x) < f(x0) + 1
n
}, x0

)

> 1
2 and

lim
n→∞

d
(

{x ∈ U : f(x) > f(x0) −
1
n
}, x0

)

> 1
2 .

Theorem 3. [3, Corollary 6 ] Let E =
∞
⋃

n=1
[an, bn], where bn+1 < an for

every n and x0 = lim
n→∞

an. Then

1. d+ (E, x0) = lim inf
n→∞

λ ([x0, an] ∩ E)

λ ([x0, an])

2. d
+

(E, x0) = lim sup
n→∞

λ ([x0, bn] ∩ E)

λ ([x0, bn])
.

Lemma 1. Let 1
2 < γ < 1, x ∈ R and let E be a measurable subset of R

suh that d
+
(E, x) = c > 0. Then there exists a sequene of losed intervals

{In = [an, bn] : n ≥ 1} for whih x<. . .< bn+1 < an < . . . , d+
( ∞

⋃

n=1
In, x

)

= γ,

and d
+
(

E ∩
∞
⋃

n=1
In, x

)

≥ 1
2c.

Proof. Let cn = x+ 1
n
for n ∈ N. Hene lim

n→∞

λ([cn+1, cn])

λ([x, cn+1])
= lim

n→∞

1
n(n+1)

1
n+1

= 0.

Put U1
n = [cn+1, cn+1 + γ(cn − cn+1)] and U2

n = [cn − γ(cn − cn+1), cn]
for n ≥ 1. Then λ(U1

n) = λ(U2
n) = γλ([cn+1, cn]), [cn+1, cn] = U1

n ∪ U2
n and

λ(E ∩ U1
n) + λ(E ∩ U2

n) ≥ λ(E ∩ [cn+1, cn]). It follows that for eah n ≥ 1 we

an �nd a losed interval Jn ⊂ [cn+1, cn] suh that λ(Jn) = γλ([cn+1, cn]) and

λ(E ∩ Jn) ≥ 1
2λ(E ∩ [cn+1, cn]). Hene λ

( ∞
⋃

n=1
Jn ∩ [x, ck]

)

= γλ([x, ck]) for

k ≥ 1.
Let z ∈ (x, c1). There is k ≥ 1 suh that z ∈ [ck+1, ck]. Then

λ
(

∞
⋃

n=1

Jn∩[x, z]
)

= λ
(

∞
⋃

n=k+1

Jn

)

+λ(Jk∩[ck+1, z]) ≤ γλ([x, z])+λ([ck+1, ck]),

λ
(

∞
⋃

n=1

Jn∩[x, z]
)

= λ
(

∞
⋃

n=k+1

Jn

)

+λ(Jk∩[ck+1, z]) ≥ γλ([x, z])−λ([ck+1, ck])

and

λ
(

∞
⋃

n=1

Jn ∩ E ∩ [x, z]
)

≥ λ
(

∞
⋃

n=k+1

Jn ∩ E
)

≥
1

2
λ([x, z] ∩ E) − λ([cn+1, cn]).
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Therefore

γ − 1
n

= γ −
1
n
− 1

n+1
1

n+1

≤

λ
( ∞

⋃

n=1
Jn ∩ [x, z]

)

λ([x, z])
≤ γ +

1
n
− 1

n+1
1
n

= γ + 1
n+1

and

λ
( ∞

⋃

n=1
Jn ∩ E ∩ [x, z]

)

λ([x, z])
≥

1

2

λ(E ∩ [x, z])

λ([x, z])
−

1
n
− 1

n+1
1
n

=
1

2

λ(E ∩ [x, z])

λ([x, z])
− 1

n
.

It follows that d+
( ∞

⋃

n=1
Jn, x

)

= γ and d
+
( ∞

⋃

n=1
Jn ∩ E, x

)

≥ 1
2d

+
(E, x).

We have proven that d+

(

∞
⋃

n=1
Jn, x

)

= γ and d
+
(

E ∩
∞
⋃

n=1
Jn, x

)

≥ 1
2d

+
(E, x),

but the elements of the sequene need not be disjoint.

Let {In : n ≥ 1} be a sequene of losed intervals suh that In ⊂ IntJn

for all n ∈ N and d
+
(

∞
⋃

n=1
(Jn \ In), x

)

= 0. Then the sequene {In : n ≥ 1}

possesses all the required properties.

3. MAXF and MINF for PD and GPD

De�nition 4. For any family F of funtions from U to R we de�ne

MINF = {g : U → R : ∀f∈F min{f, g} ∈ F} .

and

MAXF = {g : U → R : ∀f∈F max{f, g} ∈ F} .

Remark 1. Observe that max{f, g} = −min{−f,−g} and if F has the prop-

erty f ∈ F ⇒ −f ∈ F , then

MAXF = {g : U → R : − g ∈ MINF}.

We will �nd MAXF and MINF for PD and GPD.

Lemma 2. MINPD ⊂ PD and MINGPD ⊂ GPD.

Proof. To prove it, it su�es to take any f ∈ MINPD (f ∈ MINGPD)

and for eah x0 ∈ U de�ne a onstant funtion g(x) = f(x0) + 1. Then

g ∈ PD ∩ GPD and, sine min{f, g} ∈ PD (min{f, g} ∈ GPD), it is easy

to verify, applying Theorem 2, that f is preponderantly ontinuous in Denjoy

sense at x0 (g has the property A1 in Denjoy sense at x0).
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Lemma 3. If f ∈ PD (f ∈ GPD) and g is approximately ontinuous, then

max{f, g},min{f, g} ∈ PD (max{f, g},min{f, g} ∈ GPD).

Proof. Fix any x0 ∈ U . Sine f ∈ PD (f ∈ GPD), there exists a mea-

surable set E (there exist two measurable sets E1 and E2) suh that x0 ∈ E

(x0 ∈ E1∩E2), x0 is a point of Denjoy preponderant density of E (of both sets

E1 and E2) and f|E is ontinuous at x0 (f|E1
is upper semi-ontinuous at x0 and

f|E2
is lower semi-ontinuous at x0). Similarly, sine g is approximately on-

tinuous at x0, there exists a measurable set F suh that x0 ∈ F , d(F, x0) = 1
and g|F is ontinuous at x0. Then min{f, g}|E∩F and max{f, g}|E∩F are

ontinuous at x0 (min{f, g}|E1∩F , max{f, g}|E1∩F are upper semi-ontinuous

at x0 and min{f, g}|E2∩F , max{f, g}|E2∩F are lower semi-ontinuous at x0).

Moreover, d(E ∩ F, x0) ≥ d(E, x0) − d(R \ F, x0) > 1
2 ( d(E1 ∩ F, x0) > 1

2
and d(E2 ∩ F, x0) > 1

2 ). It follows that min{f, g} and max{f, g} are prepon-

derantly ontinuous in Denjoy sense at x0 (min{f, g} and max{f, g} satisfy

the property A1 in Denjoy sense at x0). Sine x0 was an arbitrary point,

min{f, g},max{f, g} ∈ PD (min{f, g},max{f, g} ∈ GPD).

Lemma 4. If g ∈ PD is not approximately lower semi-ontinuous at x0 ∈ U ,

then there exists f ∈ PD suh that min{f, g} �∈ GPD.

Proof. We may assume that g is not approximately lower semi-ontinuous at

x0 at the right. Then there exists ε > 0 suh that d
+
({x > x0 : f(x) <

f(x0) − ε}, x0) = c > 0. Applying Lemma 1, we an �nd a sequene of

losed intervals {In = [an, bn] : n ≥ 1} suh that x0 < . . . < bn+1 < an < . . . ,

d+
(

∞
⋃

n=1
In, x0

)

= 1
2 + 1

4c and d
( ∞

⋃

n=1
In∩{x > x0 : f(x) < f(x0)−ε}, x0

)

> 1
2c.

Pik a sequene of pairwise disjoint losed intervals {Jn = [cn, dn] : n ≥ 1} suh

that In ⊂ Int(Jn) and d
( ∞

⋃

n=1
(Jn \ In), x0

)

= 0. De�ne a funtion f : U → R

letting

f(y) =























g(x0) if y ∈
(

U \ (x0, d1)
)

∪
∞
⋃

n=1
In,

g(x0) − 2ε if y ∈
∞
⋃

n=1
[dn+1, cn],

linear on eah interval [cn, an] and [bn, dn], n = 1, 2, . . . .

Obviously, min{f(x0), g(x0)} = g(x0) and f ∈ PD, beause f is ontinuous

at eah point exept at x0 and x0 is a point of preponderant density in Denjoy

sense of
(

E \ (x0, d1

)

∪
∞
⋃

n=1
In. Let E = {y : min{f(y), g(y)} > g(x0) − ε}.
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Then E ∩
∞
⋃

n=1
[dn+1, cn] = ∅ and

d(E, x0) ≤ d+(E, x0) ≤ d+
(

E ∩
∞
⋃

n=1

In, x0

)

+ d
+
(

∞
⋃

n=1

(Jn \ In), x0

)

=

= d+
(

∞
⋃

n=1

In, x0

)

− d
+
(

∞
⋃

n=1

In ∩ {x > x0 : f(x) < f(x0) − ε}, x0

)

≤

≤
1

2
+

1

4
c −

1

2
c =

1

2
−

1

4
c <

1

2
.

This implies that min{f, g} does not have the property A1 in Denjoy sense at

x0 and min{f, g} �∈ PGD, whih ompletes the proof.

Theorem 4. MINPD = A, where A is the set of approximately ontinuous

funtions.

Proof. By Lemma 3, we have inlusion A ⊂ MINPD.

Suppose that g is not approximately ontinuous at x0. If g is not approxi-

mately lower semi-ontinuous at x0, then applying Lemma 4, we obtain that

g �∈ MINPD. Assume that g is not approximately upper semi-ontinuous at

x0 ∈ U . Without loss of generality we may assume that g is not approximately

upper semi-ontinuous at x0 at the right. Then we an �nd ε > 0 suh that

d
+(

{x > x0 : f(x) > f(x0) + ε}, x0

)

= c > 0.

As it was shown earlier, we an �nd ε > 0 and two sequenes {In =
[an, bn] : n ≥ 1}, {Jn = [cn, dn] : n ≥ 1} of losed intervals suh that x0 <

. . . < dn+1 < cn < . . . , In ⊂ Int(Jn) for n ∈ N, d+
( ∞

⋃

n=1
In, x0

)

= 1
2 + 1

4c,

d
+
( ∞

⋃

n=1
(Jn \ In), x0

)

= 0 and d
+
( ∞

⋃

n=1
In ∩{x > x0 : f(x) > f(x0)+ ε}, x0

)

>

1
2c. De�ne f : U → R letting:

f(y) =























g(x0) + 2 · ε if y ∈
(

U \ (x0, d1)
)

∪
∞
⋃

n=1
In,

g(x0) − 2 · ε if y ∈
∞
⋃

n=1
[dn+1, cn],

linear on the intervals [cn, an] and [bn, dn], n = 1, 2, . . . .

It is lear that f ∈ PD, sine it is disontinuous only at x0 and x0 is a point

of preponderant density in Denjoy sense of
(

U \ (x0, d1)
)

∪
∞
⋃

n=1
In. Moreover,

min{f(x0), g(x0)} = g(x0). Let E = {x ∈ U : |min{f(y), g(y)} − g(x0)| < ε}.
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Then E ∩
∞
⋃

n=1
[dn+1, cn] = ∅ and

d(E, x0) ≤ d+(E, x0) ≤ d+
(

E ∩
∞
⋃

n=1

In, x0

)

+ d
+
(

∞
⋃

n=1

(Jn \ In), x0

)

=

= d+
(

∞
⋃

n=1

In, x0

)

− d
+
(

∞
⋃

n=1

In ∩ {x > x0 : f(x) < f(x0) − ε}, x0

)

≤

≤
1

2
+

1

4
c −

1

2
c =

1

2
−

1

4
c <

1

2
.

Therefore min{f, g} is not Denjoy preponderantly ontinuous at x0. It follows

that min{f, g} �∈ PD. We have proven that if g �∈ A, then g �∈ MINPD.

Hene MINPD ⊂ A, whih ompletes the proof.

Applying Remark 1, we have:

Corollary.

MAXPD = A.

Theorem 5. MINGPD = GPD ∩ {f : f is approximately lower semi-onti-

nuous}.

Proof. Let g ∈ MINGPD. Remark 1 and Lemma 4 imply that g ∈ GPD and

g is lower semi-ontinuous.

Let f, g : U → R, f, g ∈ GPD, x0 ∈ I and g be approximately lower semi-

ontinuous at x0. If min{f(x0), g(x0)} = g(x0), then

{y ∈ U : g(y) < g(x0) + ε} ⊂
{

y ∈ U : min{f(y), g(y)} < g(x0) + ε
}

and if min{f(x0), g(x0)} = f(x0), then

{y ∈ U : f(y) < f(x0) + ε} ⊂
{

y ∈ U : min{f(y), g(y)} < f(x0) + ε
}

for eah ε > 0. In both ases x0 is a point of preponderant density in Denjoy

sense of
{

y ∈ U : min{f(y), g(y)} < min{f(x0), g(x0)} + ε
}

for eah x0 ∈ I and eah ε > 0, beause f, g ∈ GPD.

On the other hand, the set {y ∈ U : g(y) > g(x0)−ε}∩{y : f(y) > f(x0)−ε}
is ontained in

{

y ∈ U : min{f(y), g(y)} > min{f(x0), g(x0)} − ε
}

. Sine

f ∈ GPD and g is approximately lower semi-ontinuous at x0, we have

d
(

{y : f(y) > f(x0) − ε}, x0

)

>
1

2
and d

(

{y : g(y) > g(x0) − ε}, x0

)

= 1.
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Therefore

d
({

y ∈ U : min{f(y), g(y)} > min{f(x0), g(x0)} − ε
}

, x0

)

≥

≥ d
(

{y ∈ U : f(y) > f(x0)−ε}, x0

)

−d
(

R\{y ∈ U : g(y) > g(x0)−ε}, x0

)

≥

≥ d
(

{y ∈ U : f(y) > f(x0) − ε}, x0

)

.

Hene

lim
ε→0+

d
({

y ∈ U : min{f(y), g(y)} > min{f(x0), g(x0)} − ε
}

, x0

)

≥

≥ lim
ε→0+

d
(

{y ∈ U : f(y) > f(x0) − ε}, x0

)

>
1

2
.

It follows that min{f, g} has property A1 in Denjoy sense at x0. Sine x0 was

an arbitrary point of U , we have min{f, g} ∈ GPD. Therefore g ∈ MINGPD.

This ompletes the proof.

Corollary.

MAXGPD = GPD ∩ {f : f is approximately upper semi-ontinuous}.
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