Jan Dtugosz University in Czestochowa

Scientific Issues, Mathematics XVI, Czestochowa 2011

SOME ALGEBRAIC PROPERTIES
OF PREPONDERANTLY CONTINUOUS
FUNCTIONS

Stanistaw Kowalczyk

Institute of Mathematics, Academia Pomeraniensis
ul. Arciszewskiego 22b, 76-200 Stupsk, Poland
e-mail: stkowalcz@onet.eu

Abstract. In the presented paper we study some properties of preponderantly
continuous functions and functions satisfying the property A;. For any family F of
real-valued functions we define MAXr = {g: max{f,g} € Fforall f € F} and
MINF ={g: min{f,g} € F for all f € F}. The aim of the paper is to find MINz
for two discussed classes of functions.

1. Preliminaries

Let R, N be the set of real numbers and natural numbers, respectively. Next,
let I denote a closed interval, U any open subset of R and Int(A) is the interior
of a set A C R in the natural metric. Let A stand for Lebesgue measure in R.
For each measurable set £ C R we define the lower and upper density of E at
xo € R by:

o AINE) — o AINE)
d(E,xo)—)\(Il;Elolggg—/\(I) and d(E,aco)—)\&l)Igatg)g O

If d(E,x9) = d(FE,x0), we denote this common value by d(E, zo) and call it
the density of FE at xg. In a similar way, we also define the one-sided lower and
upper density of the set E at the point xq: d* (E,x0), d~ (E, o), d (E,x0)
andd (E,zq). It is easy to check that d (E, zq) = min{ d* (E,zq),d” (E,z0)}
and d(E,z0) = max{ d  (E,z0),d (E,z0)}. If d"(BE,z0) = d' (E, x0)
(d (E,z0) = d (E,x0)), then we denote this common value by d*(E,xq)
(d~(E,xo)) and call it the right (the left) density of E at x.

There are a few nonequivalent definitions of preponderant density and pre-
ponderant continuity [3]. We will use the following.
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Definition 1. [1,3] A point z¢p € R is said to be the point of preponderant
density in Denjoy sense of a measurable set E C R if d(E, z¢) > %

Similarly, we can define the preponderant density in Denjoy sense of a mea-
surable set £ C R at the right and at the left. Moreover, a point zg € R is
the point of preponderant density in Denjoy sense of a measurable set £ C R
iff it is the point of preponderant density in Denjoy sense of the measurable
set I at the right and at the left.

Definition 2. [1,3] A function f: U — R is said to be preponderantly con-
tinuous in Denjoy sense at xg € U if there exists a measurable set E C U
containing xy such that d (E,xy) > % and fg is continuous at xo. A function
f: U — R is said to be preponderantly continuous in Denjoy sense if il is
preponderantly continuous in Denjoy sense at each point xg € U. The class
of all functions which are preponderantly continuous in Denjoy sense will be

denoted by PD.

Grande [2] defined a property of real functions called the property Aj.
Based on this, we may define a similar property, which extends the notion of
preponderant continuity.

Definition 3. [2,3] A function f: U — R is said to have the property Ay in
Denjoy sense at xg € U if there exist measurable sets Fy C U and Es C U
containing xo such that xq is the point of preponderant density in Denjoy sense
of both sets Ey and Es, f|g, is upper semi-continuous at xo and fig, is lower
semi-continuous at xo. A function f: U — R has the property A1 in Denjoy
sense if it has the property Ay in Denjoy sense at each xo € U. The class of
all functions which have the property Ay in Denjoy sense will be denoted by

GPD.
Corollary. PD C GPD.

2. Auxiliary lemmas

We will present some known facts and the useful lemma.

Theorem 1. [3, Corollary 9| GPD C By and PD C By, where By is the set
of Baire class 1 functions.

Theorem 2. [3, Theorem 2 |

(i) A measurable function f: U — R is preponderantly continuous in Denjoy
sense at xg € U iff lim d({x eU: |f(x) — f(zo)| < %},m) > 1,
n—oo
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(ii) A measurable function f: U — R has the property Ay in Denjoy sense
at xo € U iff lim c_l({x e U: f(z) < f(zo) + %},xo) > 1 and

lim d({z € U: f(2) > f(wo) = 1},m0) > 5.

N~ —

Theorem 3. [3, Corollary 6] Let E = | [an,byn], where b,y1 < ay for
n=1
every n and ro = lim a,. Then
E
1. d* (E,z0) = liminf Allzo, 4] O E) ([0, an] 0 E)
n—oo  A([zo,an])
A ([xo, by N E)

—+ :
2. d (E,zg) =limsu
( 0) naoop A ([-TOa bn])

Lemma 1. Let % <y <1, € R and let E be a measurable subset of R

such that E+(E,:c) = c > 0. Then there exists a sequence of closed intervals
[e.e]

{IL, = [an,by): n > 1} for whichz<...< bpt1< a, < ...,d*( U In,x> =1,
n=1

and d (Em U In,x) > L.

n=

1
lim 2 g,
xS

A
Proof. Let ¢, = w—i— for n € N. Hence lim M =
n—oo )\([(L‘, Cn—l—l]) n—oo

Put Ul = [cnt1,cnt1 + Y(en — eng1)] and U2 = [en — Y(cn — Cat1),Cn)
for n > 1. Then A\(U}) = AU2) = yA([cns1s¢cn))s [eni1scn) = Ul U U2 and
MENUN+XMENU2) > MEN[cpi1,cn])- Tt follows that for each n > 1 we
can find a closed interval J,, C [¢p11, ¢ such that A(J,) = YA([en41, ¢n]) and
ME N Jp) > 3A(E N [ept1,¢,]). Hence )\( U Jn [ac,ck]> = YA([z, ¢x]) for

n=1

k> 1.
Let z € (x,c1). There is k > 1 such that z € [exy1, cx]. Then

A( U Jnﬂ[:c,z]) - A( U Jn)—l—)\(Jkﬂ[ckH,z]) < Mz, 2) +A(ersts e,
n=1 n=k+1

AU dnnle2) =A( U ) + AN [ers1, 2]) = 20, 2]) = Mlers1, k)
= n=k+1

and

(UJ ﬂEﬂ:cz)>)\( U JﬂE)

n=1 n=k+1

)‘(['Ta Z] N E) - )‘([CnJrl,Cn])'

l\.')lr—l
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Therefore
1_ 1 )\(UJnﬂ[:c,z]) 11
1 n n+1 n=1 n n+1 1
Y- =7 < <v+ =+ T
T A7) I o
and
A J,NEN]z,
(Y, 23) @mam) ioah ek
NEX) =2 A T T Mwma) "

It follows that d+( U Jn,:c> = v and E+< U 7 ﬂE,x) > %E+(E,x).
n=1

o] _ 0o
We have proven that d™ ( U Jn, :c) = yandd’ (E NUY Jn,x
n=1 n=1
but the elements of the sequence need not be disjoint.
Let {I,: n > 1} be a sequence of closed intervals such that I,, C Int.J,

o0

for all n € N and d" U (Jn\ In),x) = 0. Then the sequence {I,,: n > 1}
n=1
possesses all the required properties. [l

N————
Y
N[
al

+
&
-

3. MAXr and MINF for PD and GPD

Definition 4. For any family F of functions from U to R we define
MINF={g9: U = R: Vpcr min{f,g} € F}.
and
MAXr ={g: U = R: Vycr max{f,g} € F}.
Remark 1. Observe that max{f,g} = —min{—f, —g} and if F has the prop-
erty f e F = —f € F, then
MAXr ={g: U - R: —g e MINr}.
We will find MAXr and MZNx for PD and GPD.
Lemma 2. MZNpp C PD and MINgpp C GPD.

Proof. To prove it, it suffices to take any f € MZINpp (f € MINgpp)
and for each zy € U define a constant function g(z) = f(xg) + 1. Then
g € PDNGPD and, since min{f,g} € PD (min{f,g} € GPD), it is easy
to verify, applying Theorem 2, that f is preponderantly continuous in Denjoy
sense at xo (g has the property A; in Denjoy sense at xq). U
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Lemma 3. If f € PD (f € GPD) and g is approzimately continuous, then
max{f, g}, min{f,g} € PD (max{f, g}, min{f, g} € GPD).

Proof. Fix any zo € U. Since f € PD (f € GPD), there exists a mea-
surable set E (there exist two measurable sets Fy and Es) such that xg € F
(xo € E1NEsy), xg is a point of Denjoy preponderant density of E (of both sets
E; and Es) and f| £ is continuous at zq ( f‘ B, is upper semi-continuous at x¢ and
f|E, is lower semi-continuous at ). Similarly, since g is approximately con-
tinuous at zg, there exists a measurable set F' such that z¢g € F, d(F,z9) =1
and g is continuous at xo. Then min{f, g} gnr and max{f,g}pnr are
continuous at ¥o (min{f, g} g,r, max{f, g} g nr are upper semi-continuous
at xg and min{f, g} g,np, max{f, g} g,nr are lower semi-continuous at o).
Moreover, d(E N F,z0) > d(E,xo) — dR \ F,x0) > 3 ( d(E1 N F,20) > 3
and d(E, N F,z9) > 1). Tt follows that min{f, g} and max{f, g} are prepon-
derantly continuous in Denjoy sense at zp (min{f, g} and max{f, g} satisfy
the property A; in Denjoy sense at xg). Since xy was an arbitrary point,
min{ f, g}, max{f,¢g} € PD (min{f, g}, max{f,g} € GPD). O

Lemma 4. If g € PD is not approzimately lower semi-continuous at xg € U,
then there exists f € PD such that min{f, g} ¢ GPD.

Proof. We may assume that g is not approximately lower semi-continuous at
xo at the right. Then there exists € > 0 such that E+({x > zo: f(z) <
f(zg) — e},xz9) = ¢ > 0. Applying Lemma 1, we can find a sequence of
closed intervals {I,, = [an,by]: n > 1} such that 29 < ... < byy1 < an < ...,

o) _,

d*( U In,z0) = 1+ 2cand d( U Lnn{z > zo: f(z) < f(xo)—g},xo) > Zc.
n=1 n=1

Pick a sequence of pairwise disjoint closed intervals {J,, = [¢,,d,]: n > 1} such

that I, C Int(J,) and E( U (Jn\ In),xo) = 0. Define a function f: U — R

n=1
letting
gle) it y € (U\ (20,d1)) U U1 In,
f(y) - g(mo) —2¢ if Yy € U [dn+1a CTL]a

n=1
linear on each interval [c,, a,] and [b,,d,], n=1,2,... .

Obviously, min{ f(x¢), g(z0)} = g(xo) and f € PD, because f is continuous
at each point except at x¢ and xg is a point of preponderant density in Denjoy

sense of (E \ (zg,d;) U E:jl I,. Let B = {y: min{f(y),9(y)} > g(xo) — €}
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Then EN U [dnt1,cn] =0 and

n=1

d(E,x9) < d"(E,z0) < d* (E N G In,xo) +E+( G (Jn \ In),xo) -
n=1

n=1

:d*( [j In,xo) —E+( [j I,n{z > zo: f(x) <f(:c0)—5},:c0) <
n=1

n=1

<—-+4+-c—=c==-—-c<

N | —
=~ =
N | —
N | —
=~ =
N | —

This implies that min{ f, g} does not have the property A; in Denjoy sense at
xo and min{f, g} ¢ PGD, which completes the proof. O

Theorem 4. MINpp = A, where A is the set of approzimately continuous
functions.

Proof. By Lemma 3, we have inclusion A € MZNpp.

Suppose that g is not approximately continuous at xg. If ¢ is not approxi-
mately lower semi-continuous at xg, then applying Lemma 4, we obtain that
g & MZINpp. Assume that g is not approximately upper semi-continuous at
xo € U. Without loss of generality we may assume that g is not approximately
upper semi-continuous at g at the right. Then we can find € > 0 such that
d" ({z > zo: f(z) > f(zo) +€},20) = > 0.

As it was shown earlier, we can find ¢ > 0 and two sequences {I, =
[an,bp]: n > 1}, {J, = [cn,dn]: n > 1} of closed intervals such that zp <

o0
coe <dp1 < e < ..o, I, C Int(J,) for n € N, d+( U In,:c(J) = %+ic,
n=1

E+( G(Jn\ln),xo) =0 and E+<n§1]nﬂ{x>x0: flx) > f(aco)-l—e},xo) >

n=1

%c. Define f: U — R letting:

glao) +2-¢ if ye U\ (eo,d)U U L

n=1
f(y): g(xo)_Q-g if ye Ej [dn+170n]7
n=1

linear on the intervals [c,, a,] and [b,, d,], n=1,2,....

It is clear that f € PD, since it is discontinuous only at xg and xg is a point

o0
of preponderant density in Denjoy sense of (U \ (zo,d1)) U |J I. Moreover,

n=1

min{f(zo), 9(z0)} = g(xo). Let E = {z € U: [min{f(y), g(y)} — g(xo)| < e}.
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Then EN U [dnt1,cn] =0 and

n=1

d(E,0) < d"(E,z0) < d* (Eﬂ Cj In,xo> +E+< G (Jn \In),xo) =
n=1

n=1

:d+( [jlln,xo) _EJr( [jl[nﬂ{x > xo: f(z) < f(zo) —5},x0> <

1 1 1 1 1
+_C__C:__ZC<_

<1 .
—2 4 2 2 2

Therefore min{ f, g} is not Denjoy preponderantly continuous at x. It follows
that min{f,g} & PD. We have proven that if g ¢ A, then g & MINpp.
Hence MZNpp C A, which completes the proof. O

Applying Remark 1, we have:

Corollary.
MAXpp = A.

Theorem 5. MINgpp = GPD N{f: f is approzimately lower semi-conti-
nuous}.

Proof. Let g € MINgpp. Remark 1 and Lemma 4 imply that g € GPD and
g is lower semi-continuous.

Let f,g: U = R, f,g € GPD, g € I and g be approximately lower semi-
continuous at xg. If min{f(x), g(xo)} = g(zo), then

{yeU: g(y) < glxo) +e} C {y e U: min{f(y),9(y)} < glxo) +¢}
and if min{f(xo), g(zo)} = f(z0), then

{yeU: f(y) < f(zo) +e} C{y e U: min{f(y),9(y)} < f(x0) +¢}

for each € > 0. In both cases zg is a point of preponderant density in Denjoy
sense of

{y € U: min{f(y), 9(y)} < min{f(w0),g(x0)} + ¢}
for each xy € I and each € > 0, because f,g € GPD.
On the other hand, theset {y € U: g(y) > g(xo)—e}{y: f(y) > f(xo)—e}

is contained in {y € U: min{f(y),g(y)} > min{f(zo),g(z0)} — €}. Since
f € GPD and g is approximately lower semi-continuous at xg, we have

d({y: F(u) > flao) <o) > 3 and d({y: gly) > glro) — €}, 0) = 1
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Therefore

d({y € U: min{f(y),9(y)} > min{f(z0),g(x0)} — €}, 20) >
>d({y € U: f(y) > f(xo) —e},20) —d(R\{y € U: g(y)
>d({y €U: f(y)

Hence

lim d({y € U: min{f(y),9(y)} > min{f(x0),g(x0)} — €}, 20) >

e—0t

N —

> lim d({y € U: f(y) > f(wo) =} w0) >

It follows that min{f, g} has property A; in Denjoy sense at xg. Since xg was
an arbitrary point of U, we have min{f, g} € GPD. Therefore g € MINgpp.
This completes the proof. O

Corollary.

MAXgpp = GPD NA{[f: f is approzimately upper semi-continuous}.
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