PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Convective flow of hydromagnetic couple stress fluid with varying heating through vertical channel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article addresses the impact of magnetic field induction on the buoyancy-induced oscillatory flow of couple stress fluid with varying heating. Modelled equations for the incompressible fluid are coupled and nonlinear due to the inclusion of viscous heating and thermal effect on the fluid density. Approximate solutions are constructed and coded on a symbolic package to ease the computational complexity. Graphical representations of the symbolic solutions are presented with detailed explanations. Results of the present computation show that the effect of induced magnetic field on the oscillatory flow and heat transfer is significant and cannot be neglected.
Rocznik
Strony
107--127
Opis fizyczny
Bibliogr. 56 poz., wykr.
Twórcy
  • Department of Mathematics and Applied Mathematics, University of Limpopo Private Bag X1106, Sovenga 0727, SOUTH AFRICA
autor
  • Department of Mathematics and Applied Mathematics, University of Limpopo Private Bag X1106, Sovenga 0727, SOUTH AFRICA
  • Department of Mathematical Sciences, Redeemer’s University Ede, NIGERIA
Bibliografia
  • [1] Wang CY. (1988): Free convection between vertical plates with periodic heat input.– ASME J. Heat Trans, vol.110, pp.508-511.
  • [2] Jha B.K. and Ajibade A.O. (2012): Effect of viscous dissipation on natural convection flow between vertical parallel plates with time-periodic boundary conditions.– Commun. Nonlinear Sci. Numer. Simul., vol.17, pp.1576-1587.
  • [3] Jha B.K. and Ajibade A.O. (2009): Free convective flow of heat generating/absorbing fluid between vertical porous plates with periodic heat input.– Int. Commun. Heat Mass Transfer, vol.36, pp.624-631.
  • [4] Jha B.K. and Ajibade A.O. (2010): Free convective flow between vertical porous plates with periodic heat input.– ZAMM. J. of Appl. Math. and Mech., pp.1-9. http://dx.doi.org/10.1002/zamm.200900268.
  • [5] Adesanya S.O. (2015): Free convective flow of heat generating fluid through a porous vertical channel with velocity slip and temperature jump.– Ain Shams Eng. J., vol.6, pp.1045-1052.
  • [6] Adesanya S.O., Oluwadare E.O., Falade J.A. and Makinde O.D. (2015): Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions.– J. Magn. Magn. Mater., vol.396, pp.295-303.
  • [7] Abbas Z., Wang Y., Hayat T. and Oberlack M. (2008): Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface.– Int. J. Non Linear Mech, vol.43, No.8, pp.783-793.
  • [8] Hayat T., Noreen S., Shabab Alhothuali M., Asghar S. And Alhomaidan A. (2012): Peristaltic flow under the effects of an induced magnetic field and heat and mass transfer.– Int. J. Heat Mass Transfer, vol.55, pp.443-452.
  • [9] Hayat T., Wang. Y. and Hutter K. (2004): Hall effects on the unsteady hydromagnetic oscillatory flow of a second-grade fluid.– Int. J. Non Linear Mech., vol.39, pp.1027-1037.
  • [10] Mehmood A. and Ali A. (2007): The effect of slip condition on unsteady MHD oscillatory flow of a viscous fluid in a planer channel.– Rom J Phys., vol.52, pp.85-91.
  • [11] Wang C.Y. (1988): Nonlinear streaming due to the oscillatory stretching of a sheet in a viscous.– Acta Mech, vol.72, pp.261-268.
  • [12] Ahmed S. (2010): Induced magnetic field with radiating fluid over a porous vertical plate: analytical study.– J. Nav. Archit. Mar. Eng., vol.7, pp.83-94.
  • [13] Raju M.C., Varma S.V.K. and Seshaiah B. (2015): Heat transfer effects on a viscous dissipative fluid flow past a vertical plate in the presence of induced magnetic field.– Ain Shams Eng. J., vol.6, pp.333-339.
  • [14] Iqbal Z., Ehtsham Azhar. and Maraj E.N. (2017): Transport phenomena of carbon nanotubes and bioconvection nanoparticles on stagnation point flow in presence of induced magnetic field.– Physica E., vol.91, pp.128-135.
  • [15] Animasaun I.L., Raju C.S.K. and Sandeep N. (2016): Unequal diffusivities case of homogeneous -heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation.– AEJ, vol.55, pp.595-1606.
  • [16] Sheikholeslami M., Zaigham Zia Q.M. and Ellahi R. (2016): Influence of induced magnetic field on free convection of nanofluid considering Koo-Kleinstreuer-Li (KKL) correlation.– Appl. Sci., vol.6, p.324, doi:10.3390/app6110324.
  • [17] Noreen S., Hayat T. and Alsaedi A. (2011): Study of slip and induced magnetic field on the peristaltic flow of pseudoplastic fluid.– Int J Phys Sci., vol.6, No.36, pp.8018-8026.
  • [18] Kumar D. and Singh A.K. (2016): Effects of heat source/sink and induced magnetic field on natural convective flow in vertical concentric annuli.– AEJ, vol.55, pp.3125-3133.
  • [19] Ghosh S.K., Anwar Bég O. and Zueco J. (2010): Hydromagnetic free convection flow with induced magnetic field effects.– Meccanica, vol.45, pp.175-185.
  • [20] Raju C.S.K., Sandeep N. and Saleem S. (2016): Effects of induced magnetic field and homogeneous-heterogeneous reactions on stagnation flow of a Casson fluid.– Eng. Sci. Technol., an International Journal, vol.19, pp.875-887.
  • [21] Kumar A., Singh A.K. (2013): Unsteady MHD free convective flow past a semi-infinite vertical wall with induced magnetic field.– Appl. Math. Comput., vol.222, pp.462-471.
  • [22] Sheikholeslami M. and Ganji D.D. (2016): Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect.– J. Mol. Liq., vol.224, pp.526-537.
  • [23] Mehmood Z. and Iqbal Z. (2016): Interaction of induced magnetic field and stagnation point flow on bioconvection nanofluid submerged in gyrotactic microorganisms.– J. Mol. Liq., vol.224(A), pp.1083-1091.
  • [24] Nandya S.K., Tapas Ray Mahapatra and Ioan Pop. (2015): Unsteady separated stagnation-point flow over a moving porous plate in the presence of a variable magnetic field.– Eur. J. Mech. B. Fluids, vol.53, pp.229-240.
  • [25] Kataria H.R., Patel H.R. and Singh R. (2017): Effect of magnetic field on unsteady natural convective flow of a micropolar fluid between two vertical walls.– Ain Shams Eng. J., vol.8, pp.87-102.
  • [26] Ojjela O., Raju A. and Kashyap Kambhatla P. (2017): Influence of thermophoresis and induced magnetic field on chemically reacting mixed convective flow of Jeffrey fluid between porous parallel plates.– J. Mol. Liq., vol.232, pp.195-206.
  • [27] Parekh K. And Upadhyay R.V. (2016): The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid.– Journal of Magnetism and Magnetic Materials, vol.431, pp.74-78. http://dx.doi.org/10.1016/j. jmmm.2016.08.024i.
  • [28] Sinha A. and Misra J.C. (2014): Effect of induced magnetic field on magnetohydrodynamic stagnation point flow and heat transfer on a stretching sheet.– ASME J. Heat Transfer, vol.136, Paper No:HT-11-1549, p.11. https://doi.org/10.1115/1.4024666.
  • [29] Saleem N., Hayat T. and Alsaedi A. (2012): Effects of induced magnetic field and slip condition on peristaltic transport with heat and mass transfer in a non-uniform channel.– Int. J. Phys. Sci., vol.7, No.2, pp.191-204.
  • [30] Ibrahim W. (2016): The effect of induced magnetic field and convective boundary condition on MHD stagnation point flow and heat transfer of upper-convected Maxwell fluid in the presence of nanoparticle past a stretching sheet.– Propulsion and Power Research, vol.5, pp.164-175.
  • [31] Bashtovoi V., Motsar A. and Reks A. (2017): Energy dissipation in a finite volume of magnetic fluid.– J. Magn. Magn. Mater., vol.431, pp.245-248.
  • [32] Ahmed S., Zueco J. and López-González LM. (2017): Effects of chemical reaction, heat and mass transfer and viscous dissipation over a MHD flow in a vertical porous wall using perturbation method.– Int. J. Heat Mass Transfer, vol.104, pp.409-418.
  • [33] Gireesha B.J., Mahanthesh B., Shivakumara I.S. and Eshwarappa K.M. (2016): Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field.– Eng. Sci. Technol., an International Journal, vol.19, pp.313-321.
  • [34] Akrama S. and Nadeem S. (2013): Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: Closed form solutions.– J. Magn. Magn. Mater., vol.328, pp.11-20.
  • [35] Stokes V.K. (1966): Couple Stresses in fluid.– Phys. Fluids, vol.9, pp.1709-1715.
  • [36] Srinivasacharya D. and Kaladhar K. (2014): Mixed convection flow of chemically reacting couple stress fluid in a vertical channel with Soret and Dufour effects.– Int. J. Comput. Methods Eng. Sci. Mech., vol.15, pp.413-421.
  • [37] Srinivas J., Adesanya S.O., Ogunseye H.A. and Lebelo R.S. (2018): Couple stress fluid flow with variable properties: A second law analysis.– Math. Meth. Appl. Sci., pp.1-14. DOI: 10.1002/mma.5325.
  • [38] Srinivas J., Adesanya S.O., Falade J.A. and Gajjela N. (2017): Entropy generation analysis for a radiative micropolar fluid flow through a vertical channel saturated with non-Darcian porous medium.– Int. J. Appl. Comput. Math., vol.4, p.3759.
  • [39] Mahabaleshwar U.S., Sarris I.E., Hill A.A., Lorenzini G. and Ioan Pop. (2017): An MHD couple stress fluid due to a perforated sheet undergoing linear stretching with heat transfer.– Int. J. Heat Mass Transfer, vol.105, pp.157-167.
  • [40] Kaladhar K., Motsa S.S. and Srinivasacharya D. (2016): Mixed convection flow of couple stress fluid in a vertical channel with radiation and Soret effects.– J. Appl. Fluid Mech., vol.9, pp.43-50.
  • [41] Nasir Ali., Sami Ullah Khan., Muhammad Sajid. and Zaheer Abbas. (2016): MHD flow and heat transfer of couple stress fluid over an oscillatory stretching sheet with heat source/sink in porous medium.– AEJ, vol.55, pp.915-924.
  • [42] Najeeb Alam Khan, Hassam Khan and Syed Anwar Ali (2016): Exact solutions for MHD flow of couple stress fluid with heat transfer.– J. Egypt. Math. Soc., vol.24, pp.125-129.
  • [43] Hayat T., Iqbal Z., Qasim M. and Aldossary O.M. (2012): Heat transfer in a couple stress fluid over a continuous moving surface with internal heat generation and convective boundary conditions.– Z. Naturforsch, vol.67, No.5, pp.217-224.
  • [44] Srinivas J. and Ramana Murthy J.V. (2016): Thermal analysis of a flow of immiscible couple stress fluids in a channel.– J. Appl. Mech. Tech. Phys., vol.57, pp.997-1005.
  • [45] Adesanya S.O., Falade, J.A. and Rach R. (2015): Effect of couple stresses on hydromagnetic Eyring-Powell fluid flow through a porous channel.– Theor. Appl. Mech., vol.42, No.2, pp.135-150.
  • [46] Nabil T.M., EL-Dabe., Salwa M.G. and EL-Mohandis. (1995): Effect of couple stresses on pulsatile hydromagnetic Poiseuille flow.– Fluid Dyn. Res., vol.15, pp.313-324.
  • [47] Srinivas J., Ramana Murthy J.V. and Chamkha A.J. (2016): Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM.– Int. J. Numer. Methods Heat Fluid Flow, vol.26, pp.1027-1049.
  • [48] Hayat T., Muhammad T. and Alsaedi A. (2017): On three-dimensional flow of couple stress fluid with Cattaneo-Christov heat flux.– Chin. J. Phys., vol.55, No.3, pp.930-938.
  • [49] Kaladhar K. (2015): Natural convection flow of couple stress fluid in a vertical channel with Hall and Joule heating effects.– Procedia Eng., vol.127, pp.1071-1078.
  • [50] Akhtar S. and Shah N.A. (2016): Exact solutions for some unsteady flows of a couple-stress fluid between parallel plates.– Ain Shams Eng. J., vol.9, No.4, pp.985-992. http://dx.doi.org/10.1016/j.asej.2016.05.008.
  • [51] Srinivas J. and Anwar Bég, O. (2018): Homotopy study of entropy generation in magnetized micropolar flow in a vertical parallel plate channel with buoyancy effect.– Heat Transfer Res., vol.49, pp.529-553.
  • [52] Sheikholeslami M., Ganji D.D. and Ashorynejad H.R. (2013): Investigation of squeezing unsteady nanofluid flow using ADM.– Powder Technol., vol.239, pp.259-265.
  • [53] Adomian G. and Rach R. (1993): Inversion of nonlinear stochastic operators.– J. Math. Anal. Appl., vol.91, pp.39-46.
  • [54] Adomian G. and Rach R. (1996): Modified Adomian polynomials.– Math. Comput. Model., vol.24, No.11, pp.39-46.
  • [55] Rach R. (2012): A bibliography of the theory and applications of the Adomian decomposition method, 1961-2011.– Kybernetes, vol.41, pp.1087-1148.
  • [56] Sheikholeslami M., Ganji D.D., Ashorynejad H.R. and Rokni H.B. (2012): Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano-particle by Adomian decomposition method.– Appl. Math. Mech.-Engl., vol.33, pp.1553-1564.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25a08fd0-67ff-4b84-9518-4b1221d98832
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.