PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boundary value problems with solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By means of the continuation method for contractions we prove the existence of solutions of Dirichlet boundary value problems in convex sets. As an application we prove the existence of concave solutions of certain boundary value problems in ordered Banach spaces.
Rocznik
Strony
49--60
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Karlsruher Institut fur Technologie (KIT) Institut fur Analysis D-76128 Karlsruhe, Germany
  • Karlsruher Institut fur Technologie (KIT) Institut fur Analysis D-76128 Karlsruhe, Germany
Bibliografia
  • [1] R.P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge Tracts in Mathematics, vol. 141, Cambridge University Press, Cambridge, 2001.
  • [2] O. Alvarez, J.-M. Lasry, P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl. 76 (1997), 265-288.
  • [3] J. Appell, C.-J. Chen, S. Tseng, M. Vath, A continuation and existence result for a boundary value problem on an unbounded domain arising for the electrical potential in a cylindrical double layer, J. Math. Anal. Appl. 332 (2007), 1134-1147.
  • [4] P.B. Bailey, L.F. Shampine, P.E. Waltman, Nonlinear two point boundary value problems, Mathematics in Science and Engineering, vol. 44, Academic Press, New York-London, 1968.
  • [5] M. Frigon, A. Granas, Z.E.A. Guennoun, Alternative non lineaire pour les applications contractantes, Ann. Sci. Math. Quebec 19 (1995), 65-68.
  • [6] A. Granas, Continuation method for contractive maps, Topol. Methods Nonlinear Anal. 3 (1994), 375-379.
  • [7] P. Hartman, Ordinary differential equations, Classics in Applied Mathematics, 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
  • [8] M. Keller-Ressel, E. Mayerhofer, A.G. Smirnov, On convexity of solutions of ordinary differential equations, J. Math. Anal. Appl. 368 (2010), 247-253.
  • [9] R. Lemmert, P. Volkmann, Bnndwe.rtproble.me fur gewohnliche Differentialgleichungen in konvexen Teilmengen eines Banachraumes, J. Differential Equations 27 (1978), 138-143.
  • [10] R. Lemmert, P. Volkmann, liber die Existenz von Losungen fur Randwertprobleme in konvexen Mengen, Arch. Math. 32 (1979), 68-74.
  • [11] R. Lemmert, P. Volkmann, On the positivity of semigroups of operators, Commentat. Math. Univ. Carol. 39 (1998), 483-489.
  • [12] R.H. Martin, Nonlinear operators and differential equations in Banach spaces, Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1976.
  • [13] R. Redheffer, Matrix differential equations, Bull. Am. Math. Soc. 81 (1975), 485-488.
  • [14] K. Schmitt, P. Volkmann, Boundary value problems for second order differential equations in convex subsets of a Banach space, Trans. Amer. Math. Soc. 218 (1976), 397-405.
  • [15] P. Volkmann, Gewohnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorraumen, Math. Z. 127 (1972), 157-164.
  • [16] P. Volkmann, liber die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201-210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25a08d4c-1e42-4b59-b37b-0031c8425885
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.