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Abstract. By means of the continuation method for contractions we prove the existence of
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1. INTRODUCTION

Let (E, ‖ · ‖) be a real Banach space with dual space E∗, let C be a closed convex
subset of E and let f : [0, 1]× C × E → E be a function with the property

t ∈ [0, 1], x ∈ C, p ∈ E, ϕ ∈ E∗,
ϕ(x) = max{ϕ(y) : y ∈ C}, ϕ(p) = 0

}
=⇒ ϕ(f(t, x, p)) ≤ 0. (1.1)

It is known [9,10,14] that property (1.1), in tandem with certain compactness or
Lipschitz conditions, leads to the existence of solutions u : [0, 1]→ C of the boundary
value problem

u′′(t) + f(t, u(t), u′(t)) = 0, u(0) = x0, u(1) = x1, (1.2)

where x0, x1 ∈ C.
We will deal with Lipschitz conditions, and to keep things quite general we make

the following stipulations: Let G : [0, 1]2 → R denote Green’s function

G(t, s) =
{
s(1− t), 0 ≤ s ≤ t ≤ 1,
t(1− s), 0 ≤ t ≤ s ≤ 1,
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corresponding to problem (1.2), and letW denote the set of all (l,m) ∈ C([0, 1], [0,∞))2

such that there exist α, β ∈ C([0, 1], (0,∞)) and q < 1 with

1
α(t)

1∫

0

G(t, s)(l(s)α(s) +m(s)β(s))ds ≤ q (t ∈ [0, 1]),

1
β(t)

1∫

0

|Gt(t, s)|(l(s)α(s) +m(s)β(s))ds ≤ q (t ∈ [0, 1]).

For example, in case of constant functions l,m it is well known that (l,m) ∈ W if
l/8 +m/2 < 1 or if m = 0 and l < π2, see [4, 7].

In this paper we use a variant of Granas’ continuation method for contractions [6]
to prove the following theorem.

Theorem 1.1. Let C ⊆ E be closed and convex with nonempty interior C◦, and let
f : [0, 1]× C × E → E be a continuous function with

‖f(t, x, p)− f(t, y, q)‖ ≤ l(t)‖x− y‖+m(t)‖p− q‖ (1.3)

for (t, x, p), (t, y, q) ∈ [0, 1] × C × E and with (l,m) ∈ W . Moreover let f have
property (1.1). Then for each choice of x0, x1 ∈ C problem (1.2) has a unique solution
u : [0, 1]→ C.

Theorem 1.1 is related to the existence result of Lemmert and Volkmann in [9].
The main difference is that in [9] the function f is assumed to be defined and to satisfy
a Lipschitz condition on [0, 1]× E × E. The fact that in Theorem 1.1 the Lipschitz
condition (1.3) is only assumed on [0, 1]× C × E will be essential for our applications
in Sections 4 and 5. In case f(t, x, p) is independent of p Lipschitz conditions on
[0, 1]× C are considered in [10]. In [9] and [10] convex sets C with empty interior are
allowed, which requires different and more involved arguments. Moreover in [9] mixed
boundary conditions are considered. Here, we consider Dirichlet boundary conditions
but emphasize that general mixed boundary conditions can be treated in our setting
with minor changes.

2. A CONTINUATION METHOD

We make use of the following variant of Granas’ continuation method for contractions [6].
Several quite similar variants of this method are known, see [1, Chapter 3] and [3,5], for
example. However, we give the proof of the version used in the sequel, for convenience
of the reader.
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Let U ⊆ E be open and let H : [0, 1] × U → E be a function with the following
properties:

1. There exists q < 1 such that

‖H(λ, x)−H(λ, y)‖ ≤ q‖x− y‖ ((λ, x), (λ, y) ∈ [0, 1]× U).

2. For each bounded subset B ⊆ U there exists lB > 0 such that

‖H(λ, x)−H(µ, x)‖ ≤ lB |λ− µ| ((λ, x), (µ, x) ∈ [0, 1]×B).

3. For all (λ, x) ∈ [0, 1)× ∂U we have

H(λ, x) 6= x.

In the sequel, ‖ · ‖∞ denotes the maximum norm on [0, 1].

Proposition 2.1. If H(0, ·) has a fixed point, then H(1, ·) has a unique fixed point.

Proof. Let
S := {λ ∈ [0, 1) : ∃x ∈ U : H(λ, x) = x}.

Note that 0 ∈ S. We will show that S is connected, hence S = [0, 1).

First, we show that S is relatively open in [0, 1): Let λ0 ∈ S and x0 ∈ U with
H(λ0, x0) = x0. Let r1 > 0 be such that B1 := {x ∈ E : ‖x − x0‖ ≤ r1} ⊆ U , and
choose ε > 0 such that

ε ≤ (1− q)r1
lB1

.

Now, for λ ∈ I := (λ0 − ε, λ0 + ε) ∩ [0, 1) and x ∈ B1 we obtain

‖x0 −H(λ, x)‖ ≤ ‖H(λ0, x0)−H(λ0, x)‖+ ‖H(λ0, x)−H(λ, x)‖

≤ q‖x0 − x‖+ lB1 |λ0 − λ| ≤ qr1 + (1− q)r1 = r1.

Thus
H(λ,B1) ⊆ B1 (λ ∈ I),

and, according to Banach’s Fixed Point Theorem, x 7→ H(λ, x) has a fixed point
in B1 ⊆ U for each λ ∈ I. Thus I ⊆ S.

Next, let z ∈ U be fixed. Let (λn)∞n=1 be a convergent sequence in S with limit
λ0 ∈ [0, 1], say, and let (xn)∞n=1 be a corresponding sequence in U with

H(λn, xn) = xn (n ∈ N).

We have

‖xn‖ ≤ ‖H(λn, xn)−H(λn, z)‖+ ‖H(λn, z)‖ ≤ q‖xn‖+ q‖z‖+ ‖H(·, z)‖∞

⇒ ‖xn‖ ≤
q‖z‖+ ‖H(·, z)‖∞

1− q =: r2 (n ∈ N).
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Hence xn ∈ B2 := {x ∈ U : ‖x‖ ≤ r2} (n ∈ N), and therefore

‖xn − xm‖ ≤ ‖H(λn, xn)−H(λn, xm)‖+ ‖H(λn, xm)−H(λm, xm)‖
≤ q‖xn − xm‖+ lB2 |λn − λm|

⇒ ‖xn − xm‖ ≤
lB2

1− q |λn − λm| (n,m ∈ N).

Thus, (xn)∞n=1 is a Cauchy sequence, hence convergent to x0, say, and x0 ∈ B2. We have

‖xn −H(λ0, x0)‖ = ‖H(λn, xn)−H(λ0, x0)‖

≤ q‖xn − x0‖+ lB2 |λn − λ0| → 0 (n→∞).

We obtain H(λ0, x0) = x0. Now, if λ0 6= 1 then x0 ∈ U , and therefore λ0 ∈ S. This
shows that S is relatively closed in [0, 1). Thus S = [0, 1). Hence there exists sequences
(λn)∞n=1 in S with limit 1 and therefore H(1, ·) has a fixed point in U , which is clearly
unique.

Although we will only use Proposition 2.1 later, we note that a Leray Schauder
type alternative holds in our setting, as usual:

Proposition 2.2 (Leray Schauder type alternative). Let U ⊆ E be open, z ∈ U and
let F : U → E be a contraction with constant q ∈ [0, 1). Then at least one of the
following assertions is true:

1. F has a fixed point in U .
2. There exists (λ0, x0) ∈ (0, 1)× ∂U such that x0 − z = λ0(F (x0)− z).

In the first case the fixed point clearly is unique.

Proof. Assume that condition 2. is false. Let H : [0, 1] × U → E be defined by
H(λ, x) = λ(F (x)− z) + z. Clearly z is a fixed point of H(0, ·),

H(λ, x) 6= x ((λ, x) ∈ [0, 1)× ∂U),

and
‖H(λ, x)−H(λ, y)‖ ≤ q‖x− y‖ ((λ, x), (λ, y) ∈ [0, 1]× U).

Next, let B ⊆ U be bounded and let r > 0 be such that ‖x− z‖ ≤ r (x ∈ B). We have

‖F (x)− z‖ ≤ ‖F (x)− F (z)‖+ ‖F (z)− z‖ ≤ qr + ‖F (z)− z‖ =: lB (x ∈ B).

Hence, for all (λ, x), (µ, x) ∈ [0, 1]×B we get

‖H(λ, x)−H(µ, x)‖ = ‖F (x)− z‖|λ− µ| ≤ lB |λ− µ|.

Summing up, Proposition 2.1 is applicable. Thus F = H(1, ·) has a fixed point in U .
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3. PROOF OF THEOREM 1.1

Proof. We assume without loss of generality that l(t) > 0 (t ∈ [0, 1]). Let α, β, q be
corresponding to (l,m) ∈W . We consider the real Banach space C1([0, 1], E) endowed
with the norm |||u||| = max{‖u/α‖∞, ‖u′/β‖∞} and set

U := {u ∈ C1([0, 1], E) : u(t) ∈ C◦}.

Note that U is open and convex, and that

U = {u ∈ C1([0, 1], E) : u(t) ∈ C}, ∂U = {u ∈ U : ∃t ∈ [0, 1] : u(t) ∈ ∂C}.

First, fix c ∈ C◦, let x0, x1 ∈ C, and let H : [0, 1]× U → C1([0, 1], E) be defined as

H(λ, u)(t) :=
1∫

0

G(t, s)(λf(s, u(s), u′(s))− (1− λ)l(s)(u(s)− c))ds+ λh(t) + (1− λ)c

with h(t) := tx1 + (1 − t)x0 (t ∈ [0, 1]). A straightforward calculation by means of
(1.3) gives

|||H(λ, u)−H(λ, v)||| ≤ q|||u− v||| ((λ, u), (λ, v) ∈ [0, 1]× U).

Moreover, if B ⊆ U is bounded, then by (1.3)

{f(t, u(t), u′(t)) : u ∈ B, t ∈ [0, 1]}

is bounded in E. Thus there is some lB > 0 such that

|||H(λ, u)−H(µ, u)||| ≤ lB |λ− µ| ((λ, u), (µ, u) ∈ [0, 1]×B).

Next, let (λ, u) ∈ [0, 1)×∂U and assume that H(λ, u) = u. Then u solves the boundary
value problem

u′′(t) + λf(t, u(t), u′(t))− (1− λ)l(t)(u(t)− c) = 0,

u(0) = λx0 + (1− λ)c, u(1) = λx1 + (1− λ)c.

Since u ∈ ∂U , and since u(0), u(1) ∈ C◦ there exists t0 ∈ (0, 1) such that u(t0) ∈ ∂C.
Hence, by Hahn–Banach’s separation theorem, there exists ϕ ∈ E∗ \ {0} such that
ϕ(u(t0)) = max{ϕ(y) : y ∈ C}. Thus in particular

ϕ(u(t0)) = max
t∈[0,1]

ϕ(u(t)),

therefore ϕ(u′′(t0)) ≤ 0, ϕ(u′(t0)) = 0, and by assumption (1.1)

ϕ(f(t0, u(t0), u′(t0))) ≤ 0.
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Since c ∈ C◦ we have ϕ(u(t0)) > ϕ(c). Summing up we obtain by l(t0) > 0

0 = ϕ(u′′(t0)) + λϕ(f(t0, u(t0), u′(t0)))− (1− λ)l(t0)ϕ(u(t0)− c) < 0,

a contradiction. Thus

H(λ, u) 6= u ((λ, u) ∈ [0, 1)× ∂U).

Finally, the constant function t 7→ c (t ∈ [0, 1]) is a fixed point of H(0, ·). Now,
according to Proposition 2.1 the function H(1, ·) has a unique fixed point in U , which
is by construction the unique solution of (1.2).

4. BVPS IN ORDERED BANACH SPACES

In this section we study, among other things, the existence of concave solutions of
the Dirichlet boundary value problem

u′′(t) + g(t, u(t)) = 0, u(0) = x0, u(1) = x1, (4.1)

in ordered Banach spaces. Inspired by the paper of Alvarez, Lasry and Lions [2], who
studied the convexity (or equivalently concavity) of viscosity solutions of scalar second
order elliptic equations with state constraints boundary conditions, we investigate the
vector valued case for ordinary differential equations. Although we use completely
different methods, the results in [2] suggest, that the combination of a comparison
principle (hence a uniqueness and quasimonotonicity condition) and concavity of g will
lead to the existence of concave solutions. The authors are indebted to Prof. Wolfgang
Reichel for drawing their attention to [2] and the problem of finding concave solutions
of boundary value problems.

Let the Banach space E be ordered by a cone K. A cone K is a nonempty closed
convex subset of E such that λK ⊆ K (λ ≥ 0), and K ∩ (−K) = {0}. As usual

x ≤ y :⇐⇒ y − x ∈ K, and x� y :⇐⇒ y − x ∈ K◦.

Let K∗ denote the dual wedge of K, that is the set of all ϕ ∈ E∗ with ϕ(x) ≥ 0
(x ≥ 0). For D ⊆ E a function g : D → E is called quasimonotone increasing (qmi for
short), in the sense of Volkmann [15], if

x, y ∈ D, x ≤ y, ϕ ∈ K∗, ϕ(x) = ϕ(y) =⇒ ϕ(f(x)) ≤ ϕ(f(y)).

Moreover, a function g : [0, 1]× E → E is called concave, if

g(λ(ξ, x) + (1− λ)(η, y)) ≥ λg(ξ, x) + (1− λ)g(η, y)

for all (ξ, x), (η, y) ∈ [0, 1]× E and λ ∈ [0, 1].
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Theorem 4.1. Let g : [0, 1]×E → E be continuous and concave, let x 7→ g(ξ, x) be
qmi and locally Lipschitz continuous for each ξ ∈ [0, 1] and let γ ∈ C([0, 1],R). Let
g(ξ0, z0)� 0 for some (ξ0, z0) ∈ (0, 1)×E, and let there exist τ, l ≥ 0 with (l, |γ|) ∈W
and

(ξ, x), (η, y) ∈ [0, 1]× E, g(ξ, x) ≥ 0, g(η, y) ≥ 0
=⇒ ‖g(ξ, x)− g(η, y)‖ ≤ τ |ξ − η|+ l‖x− y‖.

Moreover let µ : [0, 1] → R denote the unique solution of the scalar boundary value
problem

µ′′(t) + γ(t)µ′(t) = 0, µ(0) = 0, µ(1) = 1.
Then for each choice of x0, x1 ∈ E with g(0, x0) ≥ 0 and g(1, x1) ≥ 0 the boundary
value problem

u′′(t) + g(µ(t), u(t)) + γ(t)u′(t) = 0, u(0) = x0, u(1) = x1, (4.2)

has a solution u : [0, 1] → E with g(µ(t), u(t)) ≥ 0 (t ∈ [0, 1]), which is unique in
the class of solutions with this property.

The function µ in Theorem 4.1 can be evaluated to

µ(t) =
∫ t

0 exp(−
∫ s

0 γ(σ)dσ)ds
∫ 1

0 exp(−
∫ s

0 γ(σ)dσ)ds
,

and µ : [0, 1]→ [0, 1] is strictly increasing and bijective. The function µ makes problem
(4.2) seem a bit unnatural. However, it contains the following quite natural cases:
Corollary 4.2. If γ = 0, then the boundary value problem (4.1) has a concave solution
u : [0, 1]→ E, which is unique in the class of concave solutions.
Corollary 4.3. If g is independent of ξ, then the boundary value problem

u′′(t) + g(u(t)) + γ(t)u′(t) = 0, u(0) = x0, u(1) = x1,

has a solution u : [0, 1] → E with t 7→ exp(
∫ t

0 γ(s)ds)u′(t) monotone decreasing
on [0, 1], which is unique in the class of solutions with this property.

In the proof of Theorem 4.1 we use the following consequence of a result of
Volkmann on differential inequalities [16, Satz 2]:
Theorem 4.4. Let E be a real Banach space ordered by a cone K and let g : E → E
be qmi and locally Lipschitz continuous. Let x ∈ E be such that g(x) ≥ 0. Then the
solution v : [0, ω+) → E (nonextendable to the right) of the initial value problem
v′(t) = g(v(t)), v(0) = x is monotone increasing.
Proof of Theorem 4.1. We assume without loss of generality that τ, l > 0, and we
consider the Banach space E1 := R× E endowed with the norm

‖(ξ, x)‖1 = τ

l
|ξ|+ ‖x‖.

Let P : [0, 1]× E → E1 be defined by

P (ξ, x) = (0, g(ξ, x)).
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We consider the set

C := {(ξ, x) ∈ [0, 1]× E : g(ξ, x) ≥ 0}.
The set C is closed, since g is continuous on [0, 1]× E. Moreover for (ξ, x), (η, y) ∈ C
and λ ∈ [0, 1] concavity of g implies

g(λ(ξ, x) + (1− λ)(η, y)) ≥ λg(ξ, x) + (1− λ)g(η, y) ≥ 0.

Thus C is convex. Moreover (ξ0, z0) ∈ C◦, again by continuity of g. Next,
if (ξ, x), (η, y) ∈ C then

‖P (ξ, x)− P (η, y)‖1 = ‖g(ξ, x)− g(η, y)‖ ≤ τ |ξ − η|+ l‖x− y‖ = l‖(ξ, x)− (η, y)‖1.

Now, let F : [0, 1]× C × E1 → E1 be defined by

F (t, (ξ, x), (ρ, p)) = (γ(t)ρ, g(ξ, x) + γ(t)p) = P (ξ, x) + γ(t)(ρ, p).

Clearly, we have

‖F (t, (ξ, x), (ρ, p))− F (t, (η, y), (σ, q))‖1

≤ l‖(ξ, x)− (η, y)‖1 + |γ(t)|‖(ρ, p)− (σ, q))‖1.

To verify condition (1.1) for F let
{
t0 ∈ [0, 1], (ζ, c) ∈ C, (ρ, p) ∈ E1, ϕ ∈ E∗1 ,
ϕ((ζ, c)) = max{ϕ((ξ, x)) : (ξ, x) ∈ C}, ϕ((ρ, p)) = 0.

(4.3)

Let (δ, ψ) ∈ R× E∗ be the unique representation of ϕ, that is

ϕ((ξ, x)) = δξ + ψ(x) ((ξ, x) ∈ E1).

Let v : [0, ω+)→ E be the solution of the autonomous initial value problem

v′(t) = g(ζ, v(t)), v(0) = c.

Since g(ζ, c) ≥ 0 we know that v is increasing, according to Theorem 4.4. Thus
v′(t) ≥ 0 and therefore (ζ, v(t)) ∈ C (t ∈ [0, ω+)). Let h : [0, ω+)→ E1 be defined as

h(t) = (ζ, c)− (ζ, v(t)) = (0, c− v(t)).

In view of (4.3) we have

0 ≤ ϕ(h(t)) = ψ(c− v(t)) (t ∈ [0, ω+)), ϕ(h(0)) = 0.

Hence
0 ≤ ϕ(h′(0)) = −ψ(v′(0)) = −ψ(g(ζ, c))

= −ϕ(P (ζ, c)) = −ϕ(F (t0, (ζ, c), (ρ, p))).

Since by assumption (0, x0), (1, x1) ∈ C, Theorem 1.1 proves the existence of a solution
(µ, u) : [0, 1]→ C of the boundary value problem

(µ′′(t), u′′(t)) + F (t, (µ(t), u(t)), (µ′(t), u′(t))) = 0,
(µ(0), u(0)) = (0, x0), (µ(1), u(1)) = (1, x1).
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Thus, u : [0, 1] → E is a solution of (4.2) with g(µ(t), u(t)) ≥ 0 (t ∈ [0, 1]). Finally,
if w : [0, 1] → E is any solution of (4.2) with g(µ(t), w(t)) ≥ 0 (t ∈ [0, 1]), then
(µ,w) : [0, 1]→ C solves

(µ′′(t), w′′(t)) + F (t, (µ(t), w(t)), (µ′(t), w′(t))) = 0,

(µ(0), w(0)) = (0, x0), (µ(1), w(1)) = (1, x1),
and we have w = u by the uniqueness part of Theorem 1.1.

5. EXAMPLES

Let (H, (·, ·)) be a complex Hilbert space. Let E = Ls(H) denote the real Banach
space of all self-adjoint operators X : H → H, endowed with the operator norm
(‖X‖ = r(X) for X ∈ Ls(H), where r denotes the spectral radius), and ordered by
the cone of positive semidefinite operators, that is

K = {X ∈ Ls(H) : (Xx, x) ≥ 0 (x ∈ H)}.
Note that K◦ 6= ∅, as for example idH ∈ K◦. The mapping q : Ls(H) → Ls(H),
q(X) = X2 is differentiable and midpoint convex (hence convex):

X2 + Y 2

2 −
(
X + Y

2

)2
= X2 + Y 2 −XY − Y X

4 = (X − Y )2

4 ≥ 0.

Alternatively [8, Lemma 4] can be used to show that q is convex.
Therefore −q is a concave function on Ls(H). Moreover q and −q are qmi functions

on Ls(H). This is well known for the finite dimensional case [13], and can be seen in
our setting in the following way: Since q is differentiable on Ls(H) it is sufficient to
show that each derivative of q and −q is a linear qmi mapping. Fix X ∈ Ls(H) and
consider T := q′(X) : Ls(H)→ Ls(H), that is T (Y ) = XY + Y X. Then

exp(tT )(Y ) = exp(tX)Y exp(tX) ≥ 0 (t ∈ R, Y ≥ 0).

Thus T and −T are qmi, cf. [11, Theorem 1 (A)].
Now, let A : [0, 1]→ Ls(H) be a Lipschitz continuous (with constant τ) and concave

function, and let A(ξ0) � 0 for some ξ0 ∈ (0, 1). Then g : [0, 1] × Ls(H) → Ls(H)
defined by g(ξ,X) = A(ξ)−X2 is continuous and concave, and X 7→ g(ξ,X) is qmi
and locally Lipschitz continuous for each ξ ∈ [0, 1]. Moreover g(ξ0, 0)� 0. Let

(ξ,X), (η, Y ) ∈ [0, 1]× Ls(H), g(ξ,X) ≥ 0, g(η, Y ) ≥ 0.

Then
0 ≤ X2 ≤ A(ξ)⇒ ‖X2‖ ≤ ‖A(ξ)‖ ⇒ ‖X‖ ≤

√
‖A(ξ)‖,

and analogously ‖Y ‖ ≤
√
‖A(η)‖. From

g(ξ,X)− g(η, Y ) = (A(ξ)−A(η))−X(X − Y )− (X − Y )Y

we obtain
‖g(ξ,X)− g(η, Y )‖ ≤ τ |ξ − η|+ l‖X − Y ‖
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with l := 2 maxt∈[0,1]
√
‖A(t)‖. Now, if l < π2 then Corollary 4.2 applies and we obtain

the following result on the operator valued boundary value problem

U ′′(t) +A(t)− U(t)2 = 0, U(0) = X0, U(1) = X1. (5.1)

Proposition 5.1. Let

max
t∈[0,1]

‖A(t)‖ < π4

4 ≈ 24.352, X2
0 ≤ A(0), X2

1 ≤ A(1).

Then (5.1) has a concave solution U : [0, 1]→ Ls(H), which is unique in the class of
concave solutions.

Figure 1 illustrates the solutions of the boundary value problem

u′′(t) + 24 sin(πt)− u(t)2 = 0, u(0) = u(1) = 0. (5.2)

As can be seen there is a unique concave solution, and a second non-concave solution.
In particular this indicates that, in general, there are many non-concave solutions of
the operator valued boundary value problem (5.1) in Proposition 5.1.

0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

5

Fig. 1. Solutions of (5.2)

Now, let in addition A be constant, i.e. A(t) = A0 (t ∈ [0, 1]) with A0 ∈ K◦, and
let γ ∈ R. We have l = 2

√
‖A0‖, and if (l, |γ|) ∈W then Corollary 4.3 applies and we

obtain the following result on the boundary value problem

U ′′(t) +A0 − U(t)2 + γU ′(t) = 0, U(0) = X0, U(1) = X1. (5.3)

Proposition 5.2. Let
√
‖A0‖
4 + |γ|2 < 1, X2

0 ≤ A0, X
2
1 ≤ A0.

Then (5.3) has a solution U : [0, 1] → Ls(H) with t 7→ exp(γt)U ′(t) monotone
decreasing on [0, 1], which is unique in the class of solutions with this property.
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