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Abstract. The work deals with automated 

recognition of the current state of a bee colony, for 

continuous monitoring of processes running in a bee hive 

is of key importance in beekeeping. The dynamic time 

warping algorithm is considered as a method of 

analyzing acoustic signals produced by a bee colony. 

Upon such an analysis one can make inferences about the 

current state of the colony. We have developed a 

software module for audio-signal identification, which is 

to be used as a part of an automated bee colony 

monitoring system, and a software tool for verification of 

the module. We evaluated the efficacy of the algorithm, 

the probability of bee colony states correctly recognized 

using acoustic signals produced by the colony and 

consumed computational resources by the example of a 

queen bee’s sounds recorded during swarming. The 

dependencies of the signal processing time and the 

successful pattern recognition probabilities on the frame 

sample rate and frame size are presented.  

Keywords: Acoustic Signal, Signal Recognition, 

Dynamic Time Warping, Fast Fourier Transform, 

Automated Bee Colony Monitoring. 

1 INTRODUCTION 

A number of complex processes are constantly 

running in a bee hive. Some of them require an 

immediate reaction and assistance of a beekeeper to 

solve potential problems. An automated bee colony 

monitoring system might replace a long-term vigilance of 

a human beekeeper and thus help detect upcoming 

critical situations. Therefore, issues of synthesizing 

methods and tools for development of such a system are 

of key importance for beekeeping.  

Today a variety of bee colony monitoring systems 

exist. However, most of them are limited to tracking 

parameters like temperature, humidity and carbon oxide 

which are typically not sufficient for correct 

identification of processes currently running in a hive. In 

order to enhance the efficacy in recognition of events 

likely to happen in a bee hive some systems analyze 

sounds as well. Such an analysis usually boils down to 

evaluation of frequency distribution, which proves to be 

insufficient as well. There exist systems that implement 

more sophisticated signal identification methods. 

However, these systems focus on some specific states of 

a bee colony (for instance, swarming) and are not 

applicable for identification of other states. 

The work is aimed at determining the process of bee 

sounds recognition. We discuss details of adaptation of 

the dynamic time warping algorithm to the problem of 

identifying bee colony states by sounds the colony pro-

duces. 

2 LITERATURE OVERVIEW AND PROBLEM 

STATEMENT 

One of the first bee colony monitoring systems was 

Apidictor [1]. The system incorporates a low-pass filter 

for detecting a change in sounds that happens two-three 

weeks before swarming. Ferrari and his colleagues [2] 

analyzed sounds recorded using a computer sound card 

and multidirectional microphones. They also tracked 

temperature and humidity. During last decade monitoring 

systems have evolved substantially due to wireless sensor 

networks [3]. The latter consist of embedded systems that 

acquire data from different sensors, process the data and 

send them to a computer connected to a remote database. 

Kviesis et al [4] presented a sample implementation of 

such a network whose main device, a local server, 

interacts with each device placed in a hive and thus 

serves as a gateway. Rybochkin [5, 6] has published a 

series of papers on the subject of beekeeping automation. 

He considered conditions under which acoustic noise 

produced by a bee colony can be considered a stationary 

ergodic random signal. In [7], in order to calculate the 

power distribution of a short signal, the author used 

analog frequency filtering with selection of the most 

informative frequency range. Then the whole frequency 

range under scrutiny was divided into several frequency 

bands. The spectral density was averaged for all those 

bands. Different states of a bee colony were then 

identified by comparison of the averaged spectral 

densities for all the bands. Qandour and Ahmad [8] 

presented a process of audio-signal identification that 

assumes frequency filters and fast Fourier transform 

(FFT) to be used for preparation of a signal spectrogram. 

Later on, they extract some important characteristics 

from the spectrum like the peak frequency, spectral 

centroid and others that are used by classification 

methods. A similar approach is used by Cejrowski [9], 

who applied machine learning algorithms to processing 

acoustic signals (including support vector machine 

algorithm). Meikle [10] proposed a system that performs 

monitoring upon readings from a set of different sensors, 

including prerecorded sounds and vibrations of a hive. 

We are aimed at development of a software module 
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based on dynamic programming methods that would 

allow us to analyze sounds produced by a bee colony. 

Besides, the efficacy of the software module should be 

verified on a set of prerecorded sounds of a queen bee 

during swarming. 

3 ACOUSTIC SIGNALS ANALYSIS OVERVIEW 

The structure of the acoustic signal analyzing 

process can be represented by an activity diagram (Fig. 

1).  

The chosen acoustic signal processing method 

assumes the following steps to be taken. An input audio 

signal is represented as a byte stream split into fixed-size 

vectors called frames. Frames are queued for processing 

as they become available. Then the frame vector is 

multiplied by some selected window function and passed 

to the Butterworth filter. Then the vector is subjected to 

FFT, which results in a vector of complex numbers that 

contain spectral characteristics for the corresponding 

frequencies. The complex number modulus of each 

vector item represents the magnitude whereas its 

argument denotes the phase. In order to reduce the size of 

data being analyzed we first ignore the signal out of the 

target range, and after that calculate the amplitude for 

each frequency. The obtained vector of magnitudes is 

normalized and quantized in accordance with the preset 

amount of levels. For comparing the prepared magnitude 

vector with signal patterns we use the dynamic time 

warping (DTW) algorithm. As a result, for each sample 

we obtain a DTW distance between it and one of the 

samples. The least DTW distance indicates the pattern 

most similar to the audio-fragment being analyzed. We 

consider the frames to be conforming the sought-for 

signal if their distances do not exceed the preset 

threshold value.  

 

Fig. 1. An activity diagram for acoustic signal recognition 

A fast Fourier Transform (FFT) algorithm is a 

substantial analytic method of processing audio signals. 

FFT is an optimized version of the discrete Fourier 

transform (DFT). In contrast to the main DFT 

implementation whose computational complexity is 

O(N2), FFT has a complexity reduced to O(N log N). 

As a result, we will have fragments extracted from an 

audio-signal being analyzed for which spectra will be 

determined. Two algorithms parameters are of key 

importance: 1) sample frequency, fs, which is the rate of 

sampling a time-continuous audio-signal during its time-

discretization, and 2) the block length, NFFT – the number 

of samples included into a fragment being analyzed. For 

FFT the block length is 2N (N is some natural number). 

The throughput (Nyquist frequency), fn, determines 

the maximum frequency to be found by the FFT 

algorithm: 

2

fs
fn  .                                  (1) 

The time constant, TC, is determined on the basis of 

the preset discretization frequency and block length: 

fs

N
TC FFT .                                 (2) 

The frequency resolution, df, defines the distance 

between adjacent detected frequencies. Alternatively, it 

can be considered as the amount of FFT blocks formed 

out of a one-second-long fragment of an audio-signal 

being analyzed: 

FFTN

fs
df  .                                  (3) 

The sample frequency depends on the signal being 

analyzed whereas the block length can be set as an 

algorithm parameter. The sample frequency resolution is 

another FFT parameter. The bigger the FFT block length, 

the more accurate the resulting frequency spectrum but the 

slower the whole computation process. On the contrary, 

the smaller the FFT block length is, the faster FFT can be 

accomplished. Another way of speeding up the process is 
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reduction of the sample frequency resolution by omitting 

some part of frames. 

DFT assumes that the measured signal is an integer 

number of periods, so the two endpoints of the time 

waveform are interpreted as if they were connected 

together. In practice this assumption is unlikely to be 

fulfilled, i.e. the signal values at the ends of each block do 

not coincide. These discontinuities between signal blocks 

cause spectral leakages. A spectral leakage is an 

appearance of parasite frequencies actually absent from 

the original signal. In order to fight discontinuities and 

avoid spectral leakages, one applies a window function. A 

window function is a function that has zero values 

everywhere outside some specific interval. Multiplying a 

signal being investigated by a window function, one 

obtains a modified signal, zeroed everywhere outside the 

specified interval. Thus the signal values at the ends of 

blocks are forced to be equal. On the other hand, use of 

windows means the loss of signal information, since the 

parts of the signal in the middle of each window matter 

more than the signal at the boundaries of the window. 

One should place high emphasis on comparison 

between spectrograms and the patterns. Here we propose 

to benefit from the Dynamic Time Warping algorithm 

(DTW for short). The DTW algorithm was initially 

developed for speech recognition in 1960s, then spanned 

across a wide range of areas. To name a few, today it is 

used in computer vision and computer animation, data 

mining, online signature matching, gestures recognition, 

etc. The algorithm “aligns” two temporal sequences, i.e. 

minimizes the effects of shifting and distortion in time 

between them and thus allows us to detect their similarity. 

As the algorithm name implies, two-time series under 

scrutiny are “warped” non-linearly in the time dimension 

to figure out a measure of their similarity. The optimal 

sequence of transformations between the two-time series 

will be computed (a so called warping path), along with 

the distances between them. 

Let us take two numerical sequences, (a1, a2, ..., an) 

and (b1, b2, ..., bm) whose length are not necessarily equal. 

The DTW algorithm starts with computation of pairwise 

distances between the time series. By “distances” they 

usually mean Euclidean distances, however, alternative 

metrics may be used instead.  

Finding similarity may be achieved by comparing the 

numerical forms or spectrograms of the signals. In any 

case comparison assumes compensation for the unequal 

lengths of the sequences and non-linear nature of sound. 

The DTW remedies the stated problems by finding such a 

deformation that ensures the optimal distance between two 

time series of unequal lengths. In this work we make use 

of the DTW variant for comparison of two spectrograms. 

The method assumes an audio-signal to be split into a 

number of fixed-size intervals (frames). For each frame its 

frequency spectrum will be found using FFT. The 

spectrum of a frame is a numerical vector whose index 

and value represent the frequency and its corresponding 

amplitude, respectively. By turns, a spectrum vector for 

each frame being analyzed is compared with spectrums of 

the patterns. As a result, we obtain a set of DTW distances 

that characterize similarity between the frame and each of 

the patterns. Smaller distances indicate closer similarity. 

Therefore, we select the least distance. If the latter does 

not exceed some preset threshold, we conclude that the 

frame matches the corresponding pattern. 

As of many dynamic programming algorithms, the 

complexity of DTW algorithm is О(N2v) where N – is the 

sequence length and v is the size of the dictionary. In the 

case of large sequences two problems rise: storage of 

bulky spectrogram matrices and numerous computations 

of distances.  

In order to speed up the algorithm and enhance its 

efficacy at recognition of bee sounds, one analyzes only 

the frequency range containing frequencies typical of the 

sought-for signals instead of considering the whole 

spectrum resulting from the FFT. Besides, the amplitudes 

for the frequencies from the selected subrange are 

normalized and quantized. Therefore, time series will be 

compared within a fixed set of possible spectrum values. 

There exists an enhanced version of the DTW 

algorithm, called FastDWT, which provides solutions to 

the above-stated problems. The solution consists in 

splitting the state matrix into 2, 4, 8, 16 and so on smaller 

matrices by iterative dividing the input sequence into two 

parts. Thus, all calculations are done to these smaller 

matrices and warping paths computed for them. 

The DTW algorithm has its drawbacks. Firstly, the 

complexity O(N2v) is not suitable for bulky dictionaries. 

The size of the dictionary influences the outcome a 

recognition process. Not surprisingly, the larger dictionary 

is, the more chances of successful recognition results are. 

Simply put, the DTW has poor scalability. Secondly, it is 

difficult to single out two items out of two different 

sequences if one takes into account the existence of 

multiple channels with different characteristics. 

Nevertheless, the DTW remains a simple algorithm, 

available for improvements and applicable to problems of 

recognizing relatively simple sounds.  

4 IMPLEMENTATION OF A RECOGNITION 

PROCESS RESULTS 

Selection of optimal analysis methods is of key 

importance for a bee colony monitoring system. The 

system should be able to process an input audio-signal in 

real time and find matches with predefined patterns 

corresponding to different bee colony states. The whole 

analysis process is expected to be performed by an 

embedded system directly. A remote server should receive 

the pattern recognition results. Such architecture conforms 

to the approach of local data analysis. 

In accordance with the goal of this work, we are 

aimed at developing a software module for analysis of bee 

colony acoustic signals (Fig. 2) in order to identify the 

current state of the colony (for instance, swarming). The 

module being developed should be able to deal both with 

a continuous audio-stream and prerecorded audio-

fragments. Besides, the module should be presented as a 

library, which can be included in a bee colony monitoring 

system. Since the module is not to be used independently, 

we have developed an additional Windows-compliant PC 
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tool for its analysis and verification. 

 

Fig. 2. The structure of the software module for acoustic signals recognition 

As a result, the application depicts the audio-

fragment that has been processed (Fig. 3) as a spectrogram 

(Fig. 4). The values of spectrum amplitudes are 

represented as a bitmap image where the horizontal pixel 

position is determined by the sequential frame number 

(the frame position in time), its vertical position 

corresponds to the spectrum frequency and its brightness 

is calculated upon the amplitude corresponding to the 

frequency. The coordinate grid represents the time 

increase of 1 second along the horizontal axis and the 

frequency increase of 1000 Hz along the vertical one. 

The fragments of audio-signals whose DTW-

distances do not reach the threshold are marked as levels 

in the upper part of the spectrogram. Higher levels 

indicate smaller DTW-distances, which means that the 

fragment under scrutiny gets closer to one of the patterns 

from the dictionary. 

 

 

 

Fig. 3. Representation of a signal being analyzed as a wave (before and after noise filtering) 
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Fig. 4. The spectrogram of the processed audio-file fragment 

5 INVESTIGATION INTO THE PATTERN 

RECOGNITION PROCESS AND ANALYSIS OF THE 

OBTAINED RESULTS 

Having analyzed the efficacy of the developed 

software module for recognizing patterns in audio-signals, 

one can evaluate whether usage of the DTW algorithm for 

bee colony monitoring is applicable or not. Thus, we have 

evaluated the efficacy of our software module over a set 

of pre-recorded test audio-files under different parameters 

of the recognition algorithms. We considered the 

following parameters: 1) frame size for the FFT algorithm, 

2) frame sample frequency, 3) size of a pattern set for the 

DTW algorithm, 4) the threshold value for the DTW 

algorithm. 

The basic metrics to be analyzed are the signal 

processing time (at the fixed selected hardware resources), 

and the ratios Nα/NS and Nβ/N, where Nα is an amount of 

successfully recognized acoustic signal blocks, Nβ is the 

amount of false alarms, NS is the amount of signal blocks, 

N is the amount of blocks being analyzed. 

The probabilities of the errors of type I (α) and type 

II (β) correspondingly are determined by the following 

formulae:  

SN

N α1α                                   (4) 

N

Nβ
β                                      (5) 

The probability of correct signal recognizing p(S) can 

be evaluated by the formula: 

   βα1 Sp                           (6) 

During our experiments we have processed four 

audio-files of the same length, which contained acoustic 

signals of queen bees in four different hives. The signals 

differ by their noise-to-signal ratios, presence of parasitic 

signals and signal strengths (Fig. 5). The regions 

containing the acoustic signals of queen bees are marked 

on the file spectrograms. 

We have investigated into the efficacy of the process 

of recognizing patterns in acoustic signals for different 

FFT frame sizes. The bigger an FFT frame size, the larger 

data bulk is used for forming each frame. As a result, data 

processing slows down. On the other hand, the resolution 

of a spectrogram increases, which means that the 

probability of successful pattern recognition increases as 

well. Each test audio-record was processed by the 

developed software module at the size of an FFT block 

128 to 2048 samples (the signal is split into frames with 

the frequency 30 frames per second). We are seeking for 

the minimum allowable FFT block size at which it is still 

possible to achieve an applicable pattern recognition 

probability. The experimental results for each audio-

record are summarized in Table 1. 

We have calculated the ratios between successfully 

and incorrectly recognized acoustic signal blocks and the 

whole analyzed audio-signal under scrutiny, along with 

the processing time. The detected dependencies are 

depicted in Fig. 6 and Fig. 7. It was detected that the FFT 

frame size of 1024 samples is sufficient for the probability 

of successful recognition equal to 80.42%. Using a block 

of 2018 samples, one can increase the pattern recognition 

probability by 5.44% while deteriorating the processing 

time by 95.1%. On the other hand, usage of blocks with 

sizes less than 1024 samples reduces the pattern 

recognition probability to less than 70%, which is a much 

unsatisfying result. Upon the obtained figures we 

conclude that the best tradeoff between the processing 

speed and successful recognition probability is an FFT 

frame size of 1024 samples. 
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Fig. 5. Spectrograms of test audio-files 

Table 1. The results of investigation into the efficacy of the software module at different FFT frame sizes. 
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 File 1 File 2 

 543 304 

128 2.84 320 41 58.02 2.60 192 53 61.98 

256 3.17 348  43 63.13 3.11 203 55 65.55 

512 4,75 412 56 74.63 5.11 211 60 68.07 

1024 10.79 441 54 80.02 10.05 246 63 79.52 

2048 19.98 476 72 86.06 20.16 263 72 84.91 

 File 3 File 4 

 289 121 

128 2.47 164 68 55.23 2.53 74 21 60.69 

256 2.92 178 71 60.01 3.12 82 29 67.12 

512 4.88 183 76 61.63 5.05 91 37 74.38 

1024 10.10 234 81 79.51 10.27 101 38 82.63 

2048 20.41 246 87 83.19 19.85 104 42 85.02 
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Fig. 6. Dependency of the signal recognition probability on the frame size 

 

Fig. 7. Dependency of the signal processing time on the frame size 

We have studied the efficacy of the recognition 

process for various frame sample rates. The frame 

sample rate is the amount of frames out of an audio-

fragment to be analyzed per second. Since the length of 

each block is fixed, some part of data remains 

unprocessed and discarded. Consequently, the processing 

rate can be increased significantly by sacrificing the 

recognition quality. Each test audio-record is processed 

by the developed software module at frame sample rates 

ranging from 5 to 40 frames per second, with the size of 

FFT block fixed to 1024 samples. The experimental 

results are summarized in Table 2. 

As a result of investigation we have calculated the 

probabilities of recognizing patterns in an audio-signal 

under scrutiny and consumed computational resources 

including processing time (Fig. 8 and Fig. 9). 

Probabilities of pattern recognition lies in a rather narrow 

range from 78.49% – 81.11% for the frame sample 

frequencies being analyzed. The difference in the bee 

colony state recognition probabilities for adjacent 

frequencies is only 0.41%, on average. The average 

processing time increases by 21.34% for adjacent frame 

sample frequencies. However, when switching the 

frequency from 5 frames per second to 10 frames per 

second, one might expect to increase the probability of 

successful pattern recognition only by 1.2%. 

Consequently, the optimal frame sample frequency is 10 

frames per second, which is sufficient for organization of 

a recognition process with the successful recognition 

probability not worse than 79.69%. 

6 CONCLUSIONS 

The work considers the process of analyzing bee 

colony acoustic signals and its implementation as a 

software module for pattern recognition in bee sounds. 

The efficacy of the developed software module was 

studied over a set of test audio-files. We focused 

primarily on two metrics: the successful recognition 

probability and processing time. It was shown that the 

most suitable FFT frame size is 1024 samples whereas 

the most efficient frame sample rate is 10 frames per 

second. Having set the above-stated parameters to the 

recommended values, one might expect to successfully 

recognize acoustic sounds typical of a bee colony with 

the probability not worse than 79.69%.  

The developed software module is intended to be a 

part of a complex automated bee colony monitoring sys-

tem, as a component of an embedded system placed di-

rectly on a hive. Currently we are working on optimiza-

tion of the DTW version and enhancement of the recog-

nition process by noise suppression. 
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Table 2. The results of investigation into the efficacy of the software module at different frame sample rates. 
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 File 1 File 2 

5 2.05 88 70 12 77.95 1.87 46 36 8 77.19 

10 4.02 170 136 18 78.8 3.86 93 74 20 78.24 

15 5.97 277 223 28 79.26 5.97 153 123 32 78.97 

20 7.65 366 296 37 79.64 7.62 188 151 35 79.15 

25 9.71 470 381 43 79.92 9.7 254 206 53 79.69 

30 11.32 543 441 54 80.02 11.35 304 246 63 79.52 

35 13.35 620 504 58 80.19 13.26 328 267 72 80.03 

40 15.74 780 635 71 80.23 15.36 421 347 87 80.97 

 File 3 File 4 

5 1.85 50 40 10 78.67 1.89 21 17 6 80.15 

10 5.73 96 78 27 79.45 5.93 42 35 16 82.27 

15 5.87 145 118 41 79.56 5.88 60 50 19 82.49 

20 7.53 181 149 56 80.45 7.72 84 70 26 82.47 

25 9.88 231 190 64 80.54 9.43 103 86 32 82.64 

30 11.94 289 235 81 79.51 11.39 121 101 38 82.63 

35 13.06 329 268 92 79.71 13.27 137 115 43 83.12 

40 15.18 373 304 105 79.75 15.76 166 140 50 83.5 

 

Fig. 8. Dependency of the signal recognition probability on the frame sample rate 
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Fig. 9. Dependency of the signal processing time on the frame sample rate 
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