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Abstract. We consider the problem of an optimal consumption strategy on the infinite time
horizon based on the hyperbolic absolute risk aversion utility when the interest rate is an
Ornstein-Uhlenbeck process. Using the method of subsolution and supersolution we obtain
the existence of solutions of the dynamic programming equation. We illustrate the paper
with a numerical example of the optimal consumption strategy and the value function.
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1. INTRODUCTION

An investor allocates his capital in a bank and consumes an arbitrary part of his wealth
in every time moment. The purpose of this paper is to describe an optimal consump-
tion strategy which the investor can follow. In our real world, even for the money in
a bank, the interest rate may fluctuate from time to time. Therefore, we consider the
Vasicek model. Namely, we assume that the interest rate is an Ornstein-Uhlenbeck
process. This enables us to use some results from papers [2] and [12].

In [2], Fleming and Pang introduced the method of subsolution and supersolution
to solve a problem of optimal investment and consumption when the interest rate
is given by a diffusion process. In contrast to their paper we cannot use a constant
function as a subsolution (for more details see Remark 6.2).

Using some sophisticated methods, Synowiec solved in [12] some problems of capi-
tal consumption when the interest rate may fluctuate from time to time. Nevertheless,
he could not directly use the method of subsolution and supersolution from [2]. In his
work the subsolution is of the form K(r) = 0, so after the logarithmic transformation
Z(r) = lnK(r), which is necessary for the mentioned method, he got Z(r) = −∞. In
this paper we find a new subsolution for which the method introduced in [2] works.
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Similar problems have been considered by many authors (for example, see [1,6,11]).
In contrast to this paper in these articles the problem has been studied for a finite
horizon. A lot of information on this and related topics can be found in [14] and the
references therein. In [9], the problem of optimal investment and consumption, when
the interest rate is given by a diffusion process, is solved on the infinite horizon for
the logarithmic utility function. It is also worth mentioning that the multidimensional
version of the method of subsolution and supersolution, introduced in [2], is discussed
in [4] and [5].

Our solution of the consumption problem is based on stochastic control theory.
We use the Hamilton-Jacobi-Bellman verification theorem to find the optimal con-
sumption and reduce the problem to an ordinary differential equation. Then we find
a subsolution and a supersolution of a related equation. Employing some results of
Fleming and Pang given in [2], we prove the existence of its solutions, which gives
us the existence of solutions of the ordinary differential equation. Finally, in the last
section we give a numerical example of the optimal consumption strategy and the
value function.

Our paper is mainly based on [12] which is written in Polish. Nevertheless, there
is an English version [13] of this work available, so we refer the reader to it for some
proofs.

2. FORMULATION OF THE PROBLEM

Let (Ω,F ,P) be a probability space with a filtration (Ft) generated by a
one-dimensional Brownian motion (Wt). Define rt as the interest rate (i.e. the rate
offered by a bank) at a time t ≥ 0. Assume that (rt) is the Ornstein-Uhlenbeck
process, which means that it satisfies the following stochastic differential equation

{
drt = (a− brt)dt+ σdWt, t > 0,

r0 = r ∈ R,
(2.1)

where a, b, σ > 0 are constants. Suppose that an investor allocates his capital in a
bank and consumes an arbitrary part of his wealth in every time moment. Let us
denote by (Vt) the wealth process of the investor. Without any loss of generality we
assume that the consumption rate is of the form Ct = ctVt, where the (Ft)-adapted
process (ct) is called the consumption. Then Vt changes according to the differential
equation with random coefficients

{
dVt = (rtVt − Ct) dt, t > 0,

V0 = v > 0,

so

Vt = v exp

{ t∫

0

(rs − cs)ds
}
, t ≥ 0.
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We will use V (c,r,v)
t if we want to emphasize the dependence of Vt on the consumption,

the interest rate and the initial value of the investor’s wealth. The set of all admissible
consumption processes are defined as

U := {ct : ct is (Ft)-adapted and ct ≥ 0} .

Our objective is to find a consumption ĉ ∈ U such that

J (ĉ)(r, v) := sup
c∈U

J (c)(r, v),

where

J (c)(r, v) := E(r,v)

[ +∞∫

0

e−γtU
(
ctV

(c,r,v)
t

)
dt

]

and the utility function is of the form

U(C) :=
Cα

α
, α ∈ (0, 1).

We call
ϕ(r, v) := J (ĉ)(r, v)

the value function and assume that the discount rate γ satisfies the inequality

γ >
αa

b
+

α2σ2

2(1− α)b2
. (2.2)

For more information about an appropriate γ selection see Theorem 4.5.

3. SOLUTION BY THE HAMILTON-JACOBI-BELLMAN
VERIFICATION THEOREM

Let
Qf(r) :=

1

2
σ2f ′′(r) + (a− br)f ′(r),

be the formal generator of the diffusion process given by (2.1). The result below
comes from [13, Proposition 1] and is the solution of our problem, if there exists
a function K(r) which solves (3.1) and satisfies (3.3). Its proof is based on the
Hamilton-Jacobi-Bellman verification theorem (see [8, Theorem 3.1]) and is rather
standard, so we give only a sketch of it. More information on stochastic control theory
can be found, for example, in [3] and [10].

Theorem 3.1. Let K ∈ C2(R) be such that

QK(r) + (αr − γ)K(r) + (1− α)K
α
α−1 (r) = 0, r ∈ R. (3.1)

Then
ϕ(r, v) =

1

α
K(r)vα
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is the value function and
ĉ = K

1
α−1 (3.2)

is the optimal consumption whenever for all r ∈ R and ĉ ∈ U we have

lim
n→+∞

E
[
e−γnK(rn)

(
V (ĉ,r,v)
n

)α]
= 0. (3.3)

Proof. According to the Hamilton-Jacobi-Bellman verification theorem we look for
a function ϕ ∈ C2(R× (0,+∞)) such that

−γϕ(r, v) + sup
c≥0

{
(r − c)vϕv(r, v) + (a− br)ϕr(r, v) +

1

2
σ2ϕrr(r, v) +

(cv)α

α

}
= 0.

(3.4)
We expect ϕ(r, v) to be of the form

ϕ(r, v) =
1

α
K(r)vα,

for a certain function K ∈ C2(R). Then equation (3.4) takes the form

−γ
α
K(r)vα + sup

c≥0

{
1

α
QK(r)vα + (r − c)K(r)vα +

(cv)α

α

}
= 0

and the supremum is attained at ĉ given by (3.2). Hence K(r) satisfies (3.1) and the
Hamilton-Jacobi-Bellman verification theorem gives us the desired conclusion.

Note that the Hamilton-Jacobi-Bellman verification theorem enabled us to find
the optimal consumption and reduce the problem to the ordinary differential equation
(3.1). In this paper, using the method of subsolution and supersolution introduced
in [2], we show that there exists a function K(r) which solves (3.1) and satisfies
condition (3.3) of Theorem 3.1.

4. AUXILIARY RESULTS

Let

N(r) := E(r)

[ +∞∫

0

exp

{
1

1− α

(
− γt+ α

t∫

0

rsds

)}
dt

]
.

The following two results come from [13]. The proof of the next theorem with all
details can be found in [13, Proposition 4], so we omit it.

Theorem 4.1. If

N(r) < +∞ and E(r)

[ +∞∫

0

exp

{
2

1− α

(
− γt+ α

t∫

0

rsds

)}
dt

]
< +∞ (4.1)
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for each r ∈ R, then N ∈ C2(R) and

QN(r) +
αr − γ
1− α N(r) = −1. (4.2)

Theorem 4.2. If condition (4.1) is fulfilled for each r ∈ R, then the function

K(r) := N1−α(r) (4.3)

satisfies
QK(r) + (αr − γ)K(r) + (1− α)K

α
α−1 (r) ≤ 0, r ∈ R. (4.4)

Proof. Using (4.2) we get

QK(r) + (αr − γ)K(r) + (1− α)K
α
α−1 (r) = −

ασ2
(
K
′
(r)
)2

2(1− α)K(r)
≤ 0, r ∈ R.

Theorem 4.3. The function

K(r) := E(r)

[ +∞∫

0

cα exp

{
− γt+ α

t∫

0

(rs − c)ds
}
dt

]
, (4.5)

where c ∈ (0, 1), satisfies

QK(r) + (αr − γ)K(r) + (1− α)K
α
α−1 (r) ≥ 0, r ∈ R. (4.6)

Proof. From the Feynman-Kac theorem we deduce that the function K(r) satisfies
the equation

QK(r) + (αr − γ − αc)K(r) = −cα,
so

QK(r) + (αr − γ)K(r) + (1− α)K
α
α−1 (r) = αcK(r)− cα + (1− α)K

α
α−1 (r).

Define
f(k) := αck − cα + (1− α)k

α
α−1 .

The function f(k) is differentiable for each k > 0 and has a minimum at the point
k∗ = cα−1. Note that f(k∗) = 0 and

lim
k→0+

f(k) = lim
k→+∞

f(k) = +∞.

This means that
f(k) ≥ 0 for each k > 0.

Since K(r) > 0 for each r ∈ R, it follows that

αcK(r)− cα + (1− α)K
α
α−1 (r) ≥ 0.

Thus K(r) satisfies (4.6).
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Theorem 4.4. Suppose that condition (4.1) is satisfied and

lim
n→+∞

E
[
e−γnK(rn)

(
V (c,r,v)
n

)α]
= 0 (4.7)

for all r ∈ R and c ∈ U . Then

K(r) ≤ K(r), r ∈ R.

Proof. SinceK(r) satisfies (4.4) and condition (4.7), using the Hamilton-Jacobi-Bellman
verification theorem, we get

ϕ(r, v) ≤ 1

α
vαK(r), r ∈ R, v > 0. (4.8)

On the other hand, if we assume that ct = c, where c ∈ (0, 1), we have

Vt = v exp

{ t∫

0

(rs − c)ds
}
, t ≥ 0,

and

J (c)(r, v) = E(r,v)

[ +∞∫

0

e−γt
1

α
cαvα exp

{
α

t∫

0

(rs − c) ds
}
dt

]

=
1

α
vαE(r)

[ +∞∫

0

cα exp

{
− γt+ α

t∫

0

(rs − c) ds
}
dt

]
=

1

α
vαK(r).

Obviously,
1

α
vαK(r) ≤ sup

c∈U
J (c)(r, v) = ϕ(r, v), r ∈ R, v > 0. (4.9)

Finally, from (4.8) and (4.9) we infer that

K(r) ≤ K(r), r ∈ R.

The theorem below comes from [13]. For its detailed proof we refer the reader to
Steps 1 and 2 in the proof of [13, Theorem 5].

Theorem 4.5. For a γ given by (2.2), conditions (4.1) and (4.7) are satisfied.

5. METHOD OF SUBSOLUTION AND SUPERSOLUTION

In this section we briefly describe the method of subsolution and supersolution intro-
duced in [2].

Consider a second order differential equation

Z ′′(r) = H(r, Z(r), Z ′(r)), r ∈ R. (5.1)
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Definition 5.1. A function u ∈ C2(R) is said to be a subsolution of (5.1) if

u′′(r) ≥ H(r, u(r), u′(r)), r ∈ R,

and a supersolution of (5.1) if

u′′(r) ≤ H(r, u(r), u′(r)), r ∈ R.

Definition 5.2. Let Z(r) and Z(r) be a subsolution and a supersolution of (5.1),
respectively. If

Z(r) ≤ Z(r), r ∈ R,

then (Z(r), Z(r)) is said to be a pair of ordered subsolution and supersolution of (5.1).

The method of subsolution and supersolution, which can be found in [2], is sum-
marized in the next theorem.

Theorem 5.3. Assume that:

(H1) function H(r, z, p) is continuous,
(H2) function H(r, z, p) is strictly increasing in z,
(H3) pair (Z(r), Z(r)) is an ordered subsolution and supersolution of (5.1),
(H4) for each J = [r1, r2] ⊂ R, for all r ∈ J and |z| ≤ 3M , where

M = max

{
sup
r∈J
|Z(r)| , sup

r∈J
|Z(r)|

}
,

there exist C1 > 0 and C2 ≥ 0 such that

|H(r, z, p)| ≤ C1(p2 + C2).

Then there exists a solution Z(r) of equation (5.1) such that

Z(r) ≤ Z(r) ≤ Z(r), r ∈ R.

6. THE EXISTENCE OF SOLUTION

Consider a second order differential equation

Z ′′(r) = H(r, Z(r), Z ′(r)), r ∈ R, (6.1)

where
H(r, z, p) :=

2

σ2ez
Ĥ(r, z, p)

and
Ĥ(r, z, p) := −1

2
σ2p2ez − (a− br)pez − (αr − γ) ez − (1− α)e−

αz
1−α .
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Theorem 6.1. The functions Z(r) = lnK(r) and Z(r) = lnK(r) are a subsolution
and a supersolution of equation (6.1), respectively. Moreover,

Z(r) ≤ Z(r), r ∈ R.

Proof. For Z(r) = lnK(r), we have

1

2
σ2eZ(r)Zrr(r)− Ĥ(r, Z(r), Zr(r)) = QK(r) + (αr − γ)K(r) + (1− α)K

α
α−1 (r) ≤ 0

for each r ∈ R, where the latter inequality follows from Theorem 4.2. As a conse-
quence,

Zrr(r) ≤ H(r, Z(r), Zr(r)), r ∈ R.

Similarly, for Z(r) = lnK(r), in view of Theorem 4.3, we get

1

2
σ2eZ(r)Zrr(r)− Ĥ(r, Z(r), Zr(r)) = QK(r) + (αr − γ)K(r) + (1− α)K

α
α−1 (r) ≥ 0

for each r ∈ R. As a result, we obtain

Zrr(r) ≥ H(r, Z(r), Zr(r)), r ∈ R.

Now let us recall that, by Theorem 4.4, we have

K(r) ≤ K(r), r ∈ R.

This means that
Z(r) = lnK(r) ≤ lnK(r) = Z(r), r ∈ R.

Remark 6.2. Note that for Z̃(r) ≡ D, where D ∈ R, we have

1

2
σ2eZ̃(r)Z̃rr(r)− Ĥ(r, Z̃(r), Z̃r(r)) = (αr − γ) eD + (1− α)e−

αD
1−α .

Since r ∈ R, the function Z̃(r) cannot be a subsolution of equation (6.1).

In the next theorem, we show that there exists a function K(r) which solves (3.1).

Theorem 6.3. Let Z(r) = lnK(r) and Z(r) = lnK(r). Then there exists a solution
Z(r) of equation (6.1) such that

Z(r) ≤ Z(r) ≤ Z(r), r ∈ R.

Moreover, the function
K(r) := eZ(r)

is a solution of equation (3.1) such that

K(r) ≤ K(r) ≤ K(r), r ∈ R.
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Proof. First, we check all the assumptions of Theorem 5.3 for the function

H(r, z, p) =
2

σ2ez
Ĥ(r, z, p) =

2

σ2

[
−1

2
σ2p2 − (a− br)p− αr + γ − (1− α)e−

z
1−α

]
.

1. It is plain that the function H(r, z, p) is continuous.
2. Since

Hz(r, z, p) =
2

σ2
e−

z
1−α > 0, z ∈ R,

the function H(r, z, p) is strictly increasing in z.
3. In view of Theorem 6.1, (Z(r), Z(r)) is an ordered subsolution and supersolution

of (6.1).
4. For each J = [r1, r2] ⊂ R, for all r ∈ J and |z| ≤ 3M , where

M = max

{
sup
r∈J
|Z(r)| , sup

r∈J
|Z(r)|

}
,

there exist C1 > 0 and C2 ≥ 0 such that

|H(r, z, p)| =
∣∣∣∣−p2 −

2(a− br)
σ2

p− 2α

σ2
r +

2γ

σ2
− 2(1− α)

σ2
e−

z
1−α

∣∣∣∣

≤ p2 +
2a

σ2
|p|+ 2br̂

σ2
|p|+ 2α

σ2
r̂ +

2γ

σ2
+

2(1− α)

σ2
e

3M
1−α

≤ p2 +

(
a

σ2
+
br̂

σ2

)2

+ p2 +
2α

σ2
r̂ +

2γ

σ2
+

2(1− α)

σ2
e

3M
1−α ≤ C1(p2 + C2),

where
r̂ = max {|r1|, |r2|}.

Since all the assumptions of Theorem 5.3 are satisfied, we know that there exists a
solution Z(r) of equation (6.1) such that

Z(r) ≤ Z(r) ≤ Z(r), r ∈ R. (6.2)

If K(r) := eZ(r), then K ∈ C2(R) and for each r ∈ R

0 =
1

2
σ2eZ(r)Zrr(r)− Ĥ(r, Z(r), Zr(r)) = QK(r) + (αr − γ)K(r) + (1− α)K

α
α−1 (r).

Hence K(r) is a solution of equation (3.1). Moreover, from (6.2) we have

K(r) ≤ K(r) ≤ K(r), r ∈ R.

Now we verify that the function K(r) is a part of the value function.

Theorem 6.4. Let K ∈ C2(R) be a solution of equation (3.1) such that

K(r) ≤ K(r) ≤ K(r), r ∈ R, (6.3)
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where K(r) and K(r) are given by (4.3) and (4.5), respectively. Then

ϕ(r, v) =
1

α
K(r)vα

is the value function and
ĉ = K

1
1−α

is the optimal consumption.

Proof. It is sufficient to check whether all the assumptions of Theorem 3.1 are fulfilled.
To do this note that, sinceK(r) satisfies condition (3.3) (see Theorem 4.5), using (6.3),
we can easily show that K(r) satisfies this condition too.

7. NUMERICAL EXAMPLE

In this section we give a numerical example of calculating a subsolution, a supersolu-
tion and a solution of our problem.

Note that equation (2.1) has the following solution

rt = re−bt +
a

b

(
1− e−bt

)
+ σ

t∫

0

eb(s−t)dWs.

Thus
rt = re−bt + r0t , (7.1)

where (r0t ) is an Ornstein-Uhlenbeck process with the same coefficients as in the case
of the process defined in (2.1) but with the initial value r0 = 0.

Let us recall that our subsolution is of the form

K(r) := E(r)

[ +∞∫

0

cα exp

{
− γt+ α

t∫

0

(rs − c)ds
}
dt

]
.

Using Fubini’s theorem we can interchange the order of integration. Taking into ac-
count (7.1), we have

K(r) =

+∞∫

0

cα exp
{
− γt− αct

}
E(r)

[
exp

{
α

t∫

0

rsds

}]
dt

=

+∞∫

0

cα exp

{
− γt− αct+ αr

t∫

0

e−bsds

}
E

[
exp

{
α

t∫

0

r0sds

}]
dt

=

+∞∫

0

cα exp

{
− γt− αct+

αr

b

(
1− e−bt

)
}
E

[
exp

{
α

t∫

0

r0sds

}]
dt.
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Note that
t∫

0

r0sds ∼ N
(
µt, σ

2
t

)
,

where

µt =
a

b2
(
e−bt + bt− 1

)
, σ2

t =
σ2

2b3
(
2bt− 3 + 4e−bt − e−2bt

)
.

This means that

E

[
exp

{
α

t∫

0

r0sds

}]
= exp

{
αµt +

1

2
α2σ2

t

}
,

so

K(r) =

+∞∫

0

cα exp

{
−γt− αct+

αr

b

(
1− e−bt

)
+ αµt +

1

2
α2σ2

t

}
dt.

Let M be a finite time horizon. In order to make numerical approximations we need
to discretize the interval [0,M ]. Namely, we shall consider a partition of [0,M ] defined
as follows:

0 = t0 < t1 < . . . < tN = M, N ∈ N,

with the convention

∆tj := tj+1 − tj , j ∈ {0, 1, . . . , N − 1} .

Then

K(r) ≈ K(M,N)(r) :=
N−1∑

j=0

F (tj , r) + F (tj+1, r)

2
∆tj ,

where
F (t, r) := cα exp

{
−γt− αct+

αr

b

(
1− e−bt

)
+ αµt +

1

2
α2σ2

t

}
.

Acting along the same lines for a supersolution

K(r) =


E(r)




+∞∫

0

exp





1

1− α


−γt+ α

t∫

0

rsds





 dt





1−α

,

we get

K(r) ≈ K(M,N)
(r) :=

[
N−1∑

j=0

G(tj , r) +G(tj+1, r)

2
∆tj

]1−α
,

where

G(t, r) = exp

{
− γt

1− α +
αr

(1− α)b

(
1− e−bt

)
+

α

1− αµt +
1

2

(
α

1− α

)2

σ2
t

}
.
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Now, using Mathematica 9.0, we present numerical solutions for parameters

a = 0.5, b = 0.2, c = 0.9, α = 0.5, σ = 0.02 and γ = 1.5304.

Suppose that M = 30 000, N = 3 000 000 and the partition of [0,M ] is of the form

0 < 0.01 < 0.02 < . . . < 30 000.

For r ∈ {−0.48,−0.47, . . . , 0.48} we calculate the values of K(M,N)(r) and K
(M,N)

(r).
It appears that

K(M,N)(−0.48) ≈ 0.46, K(M,N)(0.48) ≈ 0.58,

K
(M,N)

(−0.48) ≈ 0.55, K
(M,N)

(0.48) ≈ 0.64.

Then we numerically solve equation (3.1) with the boundary conditions

K(−0.48) = 0.55, K(0.48) = 0.64. (7.2)

In Figures 1 and 2, we present the graphs of the functions K(M,N)(r), K
(M,N)

(r)
and the solution of (3.1) with boundary conditions (7.2).

K

K

K

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Fig. 1. The continuous blue curve K is the solution of equation (3.1) with boundary
conditions (7.2) over the interval [0, 0.3].
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K

K

K

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44

0.54

0.56

0.58

0.60

0.62

Fig. 2. The continuous blue curve K is the solution of equation (3.1) with boundary
conditions (7.2) over the interval [0.3, 0.45].
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