Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The corrosion inhibition behaviour of 1-Ethyl-3-methylimidazolium-methanesulphonate (EMIM[MS]) and 1-Ethyl-3-methylimidazolium acetate (EMIM[Ac]) on API 5LX-52 carbon steel in 2 M HCl was investigated using weight loss, potentiodynamic polarization and electrochemical impedance methods. The corrosion rates of carbon steel decreased in the presence of these ionic liquids. The inhibition efficiencies of the compounds increased with concentration and showed a marginal decrease with a 10°C increase in temperature. Polarization studies showed the compounds to be mixed type inhibitors with stronger anodic character. The adsorption mechanism of both compounds on the metal surface was via physical adsorption and the process obeyed the El-Awardy kinetic-thermodynamic model. The associated activation energy of corrosion and other thermodynamic parameters were calculated to elaborate on the thermodynamics and mechanism of the corrosion inhibition process. EMIM[MS] was found to inhibit the corrosion of carbon steel better than EMIM[Ac] and is attributed to the presence of the highly electronegative sulphur atom in its structure and its larger molecular size.
Wydawca
Czasopismo
Rocznik
Tom
Strony
295--304
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wzory
Twórcy
autor
- Corrosion and Electrochemistry Research Laboratory, Department of Pure and Applied Chemistry, University of Calabar, Calabar-Nigeria
autor
- Corrosion and Electrochemistry Research Laboratory, Department of Pure and Applied Chemistry, University of Calabar, Calabar-Nigeria
Bibliografia
- [1] K. O. Abiola, N. C. Oforka, E. E. Ebenso, N. M. Nwinuka, Anti-Corros. Method M. 54 (4), 219-224 (2007).
- [2] M. Abdallah, Corros. Sci. 46 (8), 1981-1986 (2004).
- [3] N. O. Eddy, E. E. Ebenso, Pigm. Resin Technol. 39 (2) 77-84 (2010).
- [4] E. E. Ebenso, H. Alemu, S. A. Umoren, I. B. Obot, Int. J. Electrochem. Sci. 3, 1325-1331 (2008).
- [5] R. D. Rogers, K. R. Seddon, Science. 302, 792-797 (2003).
- [6] J. S. Wilkes, Green Chemistry. 4, 73-82 (2002).
- [7] S. A. Forsyth, J. M. Pringle, D. R. MacFarlane, Aust. J. Chem. 57, 113-1120 (2004).
- [8] A. F. Al-Ghamdi, M. Messali, S. A. Ahmed, J. Mater. Environ. Sci. 2, 215-224 (2011).
- [9] H. L. Ngo, K. LeCompte, L. Hargens, A. B. McEwen, Thermochim. Acta. 97, 357-358 (2000).
- [10] F. Endres, S. Z. El Abedin, S. Matter, Phys. Chem. Chem. Phys. 8 (18), 2101-2116 (2006).
- [11] M.A.M. Ibrahim, M. Messali, Z. Moussa, A. Y. Alzahrani, S. N. Alamry, B. Hammouti, Port. Electrochim. Acta, 29 (6), 375-389 (2011).
- [12] C. Jungnickel, J. Łuczak, J. Ranke, J. F. Fernández, A. Müller, J. Thöming, Colloid Surface A Physicochem. Eng. Asp. 316, 278-284 (2008).
- [13] E. A. Noor, A. H. Al-Moubaraki, Int. J. Electrochem. Sci. 3, 806-818 (2008).
- [14] D. Q. Zhang, L. X. Gao, G. D. Zhou, Appl. Surf. Sci. 252, 4975-4981 (2006).
- [15] M. Messali, J. Mat. Environ. Sci. 2, 174-179 (2011).
- [16] M. Corrales-Luna, T. L. Manh, M. Romero-Romo, M. Palomar-Pardave, E. M. Arce-Estrada, Corros. Sci. 153, 85-99 (2019).
- [17] A. Zarrouk, M. Messali, H. Zarrok, R. Salghi, A. A. Al-Sheikh, B. Hammouti, S. S. Al-Deyab, F. Bentiss, Int. J. Electrochem. Sci. 7, 6998-7015 (2012).
- [18] Q. B. Zhang, Y. X. Hua, Electrochim. Acta. 54, 1881-1892 (2009).
- [19] M. A. Quraishi, M.Z.A. Rafiquee, K. Khan, N. Saxena, J. Appl. Electrochem. 37, 1153-1162 (2007).
- [20] Q. Zhang, Y. Hua, Mater. Chem. Phys. 119, 57-64 (2010).
- [21] M. E. Ikpi, F. E. Abeng, Int. J. Sci. Res. 6 (6) 623-628 (2017).
- [22] P.A.L. Anawe, C. U. Obi, S. S. Mehdi, K. O. Ogunniran, B. I. Ita, C. O. Ehi-Eromosele, Prot. Met. Phys. Chem. S. 51 (3), 458-466 (2015).
- [23] S. Rajendran, M. Reenkala, N. Anthony, R. Ramaraj, Corros. Sci. 44, 2243-2252 (2002).
- [24] C. Cao, Corros. Sci. 38, 2073-2082 (1996).
- [25] S. Nesic, Corros. Sci. 49, 4308-4338 (2007).
- [26] R.F.A. Jargelus-Pettersson, B. G. Pound. J. Electrochem. Soc. 145, 1462-1469 (1998).
- [27] A. A. El-Awardy, B. A. Abd-El-Nabey, S. G. Aziz, J. Electrochem. Soc. 139, 2149-2154 (1992).
- [28] A. Khadom, A. S. Yaro, A. S. AlTaie, A. A. H. Kadhum, Port. Electrochim. Acta. 27 (6), 699-712 (2009).
- [29] A. Ghanbari, M. M. Attar, M. Mahdavian, Mater. Chem. Phys. 124, 1205-1209 (2010).
- [30] S. T. Arab, A. M. Turkustuni, Port. Electrochim. Acta. 24, 53-69 (2006).
- [31] G. Moretti, F. Guidi, G. Grion, Corros. Sci. 46, 387-403 (2004).
- [32] R. Solmaz, Corros. Sci. 79, 169-176 (2014).
- [33] H. M. Bhajiwala, R. T. Vashi, B. Electrochem. 17 (10), 441-448 (2001).
- [34] M. M. Solomon, S. A. Umoren, I. I. Udosoro, A. P. Udoh, Corros. Sci. 52 (4) 1317-1325 (2010).
- [35] S. A. Umoren, I. B. Obot, E. E. Ebenso, N. O. Obi-Egbedi, Port. Electrochim. Acta. 26, 199-209 (2008).
- [36] M. Müller, Inorganic Structure Chemistry, John Wiley & Sons, New York (2006).
- [37] J. Fang, J. Li, J. Mol Struct-Theochem. 593, 179-185 (2002).
- [38] S. Deng, X. Li, Corros. Sci. 55, 407-415 (2012).
- [39] L. L. Liao, S. Mo, H. Q. Luo, Y. J. Feng, H. Y. Yin, N. B. Li, Corros. Sci. 124, 167-177 (2017).
Uwagi
EN
1. This work was supported by China-Africa Science and Technology Partnership Program (CASTEP).
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2589d07c-f331-4de7-9b00-79fd4d4369cf