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A NOTE ON CONFIDENCE INTERVALS
FOR DEBLURRED IMAGES
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Abstract. We consider pointwise asymptotic confidence intervals for images that are blurred
and observed in additive white noise. This amounts to solving a stochastic inverse problem
with a convolution operator. Under suitably modified assumptions, we fill some apparent
gaps in the proofs published in [N. Bissantz, M. Birke, Asymptotic normality and confidence
intervals for inverse regression models with convolution-type operators, J. Multivariate Anal.
100 (2009), 2364–2375]. In particular, this leads to modified bootstrap confidence intervals
with much better finite-sample behaviour than the original ones, the validity of which is,
in our opinion, questionable. Some simulation results that support our claims and illustrate
the behaviour of the confidence intervals are also presented.
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1. INTRODUCTION

Many practical problems in science, medical imaging, astronomy etc. can be formulated
as stochastic inverse problems, i.e. problems with indirect and noisy observations.
The distribution of observable data then depends on a parameter, say g, related to the
object of real interest, say θ, through an operator equation g = Kθ. Typically, θ and g
are elements of same function spaces and K−1 is unbounded, which makes the problem
ill-posed in the Hadamard sense and some sort of regularization or smoothing becomes
necessary. If K is the identity operator, the problem becomes a direct one, although
the distinction is not sharp and some problems, e.g. density estimation, may be viewed
both as direct and indirect problems (cf. [12]). A good review of non-stochastic inverse
problems and related analytical and numerical techniques is given, e.g., in [13]. For
a general treatment of estimation in stochastic inverse problems we refer to [7, 9, 16].
A recent discussion of adaptivity issues in inverse problems can be found in [8].
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Construction of pointwise confidence intervals and/or uniform confidence bands
is the most informative way of quantifying the accuracy of estimation in problems
of function estimation. The estimators typically depend on regularization/smoothing
parameters. For theoretical construction of confidence regions, those parameters are
usually assumed to be chosen a priori, i.e. not to depend on data. The point estimates
are then often linear, which paves the way to finding their asymptotic distributions
and the corresponding confidence intervals via an application of a suitable central
limit theorem and some sort of bias correction or undersmoothing, which makes the
bias negligible. The constructions of uniform confidence regions are usually based on
limit theorems for the sup-norm of an appropriately centered functional estimator.

Construction of confidence bands in direct problems of function estimation started
in 1973 with the seminal paper by Bickel and Rosenblatt [1], who constructed confidence
bands for density estimated from an i.i.d. sample, and continued in several further
developments, as summarized, e.g., in [14, Ch. 5.1.3] and [6]. The latter paper was
also the first step towards the construction of confidence bands in inverse problems
and was followed in recent years by several similar works [2, 4, 5, 10,11,15,18,19].

In typical cases, the widths rates of the pointwise and the uniform confidence
intervals differ only by a logarithmic factor (see, e.g., [18]), which makes studying
both of them interesting. The uniform confidence bands typically need larger sample
sizes to work reasonably, because of the slow convergence to the asymptotic extremal
distributions. This, and also the dependence of asymptotic distributions on unknown
parameters that have to be estimated, make the alternative bootstrap constructions
attractive.

In this paper, we reconsider the construction of pointwise confidence intervals in
an inverse regression model originally studied in [3] and correct some deficiencies of
the original article.

With r = (r1, . . . , rd) ∈ {−n, . . . , n}d and a positive sequence an → 0, consider
a d-dimensional grid zr = (r1/(nan), . . . , rd/(nan)) and corresponding measurements
Yr of a scalar function of d variables. The measurements may represent, e.g., the
intensity of a d-dimensional image in pixels centered at zr. Assume that the true
image, say θ(z), is blurred by convolution with a known function Ψ, and that the
resulting function g(z) = (Ψ ∗ θ)(z) =

∫
Rd Ψ(z− t)θ(t)dt is measured with additive

white noise, i.e.,
Yr = g(zr) + εr, (1.1)

with i.i.d. εr’s such that E(εr) = 0 and E(ε2r) = σ2. The problem of estimating θ and
its derivatives in this inverse regression model with convolution operator was studied
in [3], along with a discussion of the background literature. Notice that the design
grid expands as n → ∞ and, if nan → ∞, it becomes asymptotically dense in Rd.
As discussed in [3], this allows for estimation of θ without assuming its periodicity
and compactness of its support.

Let θ(j)(z) = ∂jθ(z)/(∂zj1
1 . . . ∂zjd

d ), with z = (z1, . . . , zd), j = (j1, . . . , jd) and
j =

∑d
k=1 jk. A smoothed spectral-cut-off estimator of θ(j) of the form

θ̂
(j)
n,h(z) =

∑

r∈{−n,...,n}d

1
ndhj+dadn

K(j)
n

(
(z− zr)/h

)
Yr (1.2)
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was proposed in [3], where

K(j)
n (z) = 1

(2π)d
∫

Rd

(−iω)j exp(−i〈ω, z〉) Fk(ω)
FΨ(ω/h)dω,

h is a scalar smoothing parameter, F denotes the Fourier transform operator, k(·)
is a suitable flat-top kernel, and ωj =

∏
k ω

jk

k , with ω = (ω1, . . . , ωd). Asymptotic
normality of θ̂(j)

n,h(z) was proved in [3], and pointwise asymptotic confidence intervals
for θ(j)(z) were constructed. Bootstrap confidence intervals were studied as well,
and recommended because they usually perform in finite samples better than the
asymptotic ones. However, there seem to be some gaps in the proofs presented in [3].
In Section 2, we fill the gaps under slightly strengthened assumptions. In case of the
bootstrap confidence intervals, this also results in a different form of the intervals.
Results of a simulation study are presented in Section 3. In particular, we show
a rather peculiar finite sample behaviour of the originally proposed bootstrap intervals,
and a much better performance of the corrected ones.

2. MAIN RESULTS

Various subsets of the following list of regularity assumptions will be used in the sequel.
The interpretation of Assumptions 1-4 has been discussed in [3].

(A1) Fk is symmetric and supported on [−1, 1]d, Fk(ω) = 1 for ω ∈ [−b, b]d with
some b > 0, and |Fk(ω)| ≤ 1 for all ω ∈ [−1, 1]d.

(A2) FΨ(ω)‖ω‖β → C, as ω →∞, for some positive β and some complex, nonzero C.
(A3)

∫
Rd |Fθ(ω)|‖ω‖s−1dω <∞ for some s > p+ 1.

(A4)
∫
Rd |g(z)|‖z‖rdz <∞.

(A5) g has bounded partial derivatives of order one.

2.1. CORRECTED ASSUMPTIONS FOR ASYMPTOTIC NORMALITY

The first important gap in [3] seems to be in the proof of Theorem 1, which concerns
asymptotic normality of θ̂(j)

n,h(z) and states that under Assumptions 1 and 2 and with

wj,r,n(z) = 1
ndhj+dadn

K(j)
n

(
(z− zr)/h

)

one has
θ̂

(j)
n,h(z)− E

(
θ̂

(j)
n,h(z)

)

σ
√∑

r w
2
j,r,n(z)

d−→ Z ∼ N(0, 1), (2.1)

if nhan →∞. We see the need for correction in the second and third line on page 2372
in [3], where the sum in the denominator is interpreted as the midpoint quadrature for
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an integral. It is unclear, how the midpoint quadrature error can give O((nhan)−d),
as Bissantz and Birke claim without giving any supporting argument (h is also missing
there, but this seems to be a misprint). Standard first-order Taylor expansion of the
integrand F1(s) :=

[
K

(j)
n

(
(z− s)/h

)]2, along with the fact that under Assumptions 1
and 2 all its first-order derivatives can be shown to be O(h−2β−1), give the quadrature
error related term of the order O(n−1h−d−2β−1a−d−1

n ). This is obtained by first showing
in a standard way that

∣∣∣∣∣∣

∫

Ar

F1(s)ds− 1
(nan)dF1(zr)

∣∣∣∣∣∣
= O

(
1

h2β+1
1

(nan)d+1

)
,

where Ar is the cube centered at zr with edge (nan)−1, then summing over the grid
points zr, and a suitable change of integration variable. Different order of approximation
results in a stronger condition to be imposed in order to obtain the asymptotic
equivalence in the fourth line on page 2372 in [3]. One needs for that nhd+1ad+1

n →∞,
rather than nhan →∞, as assumed in [3].

Midpoint quadrature is also used in the proof of Lemma 3 in [3] that gives an
estimate of the order of magnitude of the bias. Bissantz and Birke claim to have the
quadrature error of order O(n−da−dn h−j−d) in the third line of formula (5) in the proof
on page 2372. This again seems questionable, so we propose to use the same error
estimation method as before, which gives the quadrature error O(n−1a−d−1

n h−1) in
the third line and, finally, O(n−1a−d−1

n h−j−d−1) in the fourth line in formula (5) in [3].
Consequently, one needs to strengthen the original assumptions even more significantly
than before. Not only has the condition ndhβ+s+d−1adn → ∞ to be strengthened to
nhβ+s+dad+1

n → ∞, but also, in order to again estimate the quadrature error via
Taylor expansion of the integrand F2(y) := g(y) exp(i〈ω,y〉/h), one has to assume
that all first-order derivatives of the function g in (1.1) are bounded.

It is known (see, e.g., [17]) that midpoint quadratures may perform extremely well,
with rates of convergence exponential in mesh size, when applied to analytic and fastly
decaying integrands. However, out of the two integrands F1 and F2 used in the proofs,
only F1 is guaranteed to be analytic, as a band-limited function, and an application
of the results from [17] does not seem possible, also because F1 does not satisfy the
remaining conditions imposed in [17].

To summarize:

– under assumptions (A1) and (A2), the asymptotic normality given in (2.1) holds
true, if h → 0, an → 0 and nhd+1ad+1

n → ∞ (this is stronger than nhan → ∞,
assumed in [3]);

– under assumptions (A1)–(A5), bias
(
θ̂

(j)
n,h(z)

)
= o(hs−j−1), if nhβ+s+dad+1

n →∞
(this is stronger than ndhβ+s+d−1adn →∞, assumed in [3]).

Under these strengthened conditions, the construction of asymptotic confidence
intervals, as described in Corollary 4 in [3], remains valid.
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2.2. CORRECTIONS TO THE CONSTRUCTION OF BOOTSTRAP
CONFIDENCE INTERVALS

A more essential gap in [3] apparently occurs in the bootstrap part of the paper and
results in a seemingly faulty form of the bootstrap confidence intervals. To explain
that point, let us recall the residual bootstrap approach proposed in [3]. First, the
function g = Ψ ∗ θ is estimated with ĝn,h̃ = Ψ ∗ θ̂n,h̃, where θ̂n,h̃ is the estimator (1.2)
constructed with an auxiliary bandwidth h̃. Then, a set of centered residuals ε̂r − ¯̂ε,
r ∈ {−n, . . . , n}d is constructed, where ε̂r = Yr − ĝn,h̃(zr) and ¯̂ε is the mean of ε̂r’s.
Bootstrap data is generated as Y ∗r = ĝn,h̃(zr) + ε∗r , with ε∗r drawn with replacement
from the set of centered residuals. The bootstrap estimator is then defined as

θ̂
(j) ∗
n,h (z) =

∑

r∈{−n,...,n}d

1
ndhj+dadn

K(j)
n

(
(z− zr)/h

)
Y ∗r , (2.2)

and its bootstrap distribution is used to construct a confidence interval for θ(j)(z).
Typically, as suggested in [3], h̃ is taken larger than h.

The properties of the bootstrap confidence intervals are studied under the following
additional conditions, of which (A8) was missing in [3].

(A6) F θ̂n,h̃ exists and satisfies
∫

Rd

|Fθ(ω)−F θ̂n,h̃| ‖ω‖s−1dω = oP (1).

(A7)
∫
Rd

∣∣∣ĝn,h̃(z)
∣∣∣ ‖z‖rdz <∞ for some r > 0.

(A8) Almost surely, ĝn,h̃ have bounded partial derivatives of order one.
The conclusion of Theorem 5 in [3] concerns the asymptotics of the bootstrap

distribution of θ̂(j) ∗
n,h − E∗

(
θ̂

(j) ∗
n,h

)
, where E∗ denotes the expectation with respect to

the bootstrap distribution, all conditionally on the initial sample {Yr}, and gives the
consistency of the residual bootstrap. It should be noted that only assumptions (A1)
and (A2) are used in the proof of this result, and that assumptions (A3), (A4) and
(A6), (A7), imposed in the statement of Theorem 5, are only needed in the construction
of bootstrap confidence intervals in the paragraph that follows Theorem 5. Also, since
condition (4) from page 2366 in [3] is used in the proof on page 2374, one has to
additionally assume that nhd+1ad+1

n → ∞. Because of reasons discussed above in
Section 2.1, the weaker condition nhan →∞ does not seem sufficient.

Bootstrap confidence intervals proposed in [3] have the form
(

2θ̂(j)
n,h(z)− ϑ∗n,1−α/2(z), 2θ̂(j)

n,h(z)− ϑ∗n,α/2(z)
)
, (2.3)

where ϑ∗n,γ(z) is the γ-quantile of the bootstrap distribution of θ̂∗n,h(z). For the
asymptotic validity of such intervals, i.e., for the coverage probability to be 1−α+oP (1),
one would need[
E
(
θ̂

(j)
n,h(z)

)
− θ(j)(z)

]
−
[
E∗
(
θ̂

(j) ∗
n,h (z)

)
− θ̂(j)

n,h(z)
]

= oP

(
(nan)−d/2h−β−j−d/2

)
(2.4)



366 Michał Biel and Zbigniew Szkutnik

which is asserted, with d = 1 and without detailed proof, on page 2374 in [3]. It does
not seem, however, to be true in general (unless h̃ = h).

On the other hand, it can be proved that, with s defined in (A6), if

ndh2s+2β+d−2adn = o(1), nhβ+s+dad+1
n →∞,

and (A5) and (A8) hold true, then
[
E
(
θ̂

(j)
n,h(z)

)
− θ(j)(z)

]
−
[
E∗
(
θ̂

(j) ∗
n,h (z)

)
− θ̂(j)

n,h̃
(z)
]

= oP
(
hs−j−1) (2.5)

and this shows the validity of the bootstrap confidence interval of the form
(
θ̂

(j)
n,h(z) + θ̂

(j)
n,h̃

(z)− ϑ∗n,1−α/2(z), θ̂(j)
n,h(z) + θ̂

(j)
n,h̃

(z)− ϑ∗n,α/2(z)
)
, (2.6)

because
hs−j−1 = o(n−d/2h−β−j−d/2a−d/2

n ).
To see the details, write

θ̂
(j)
n,h̃

(z)− θ(j)(z) = A+B + C1,

where

A = 1
(2π)dhj+d

∫

Rd

(−iω)j exp
[
− i〈ω, z〉

h

] (
1−Fk(ω)

)[
F θ̂n,h̃(ω/h)−Fθ(ω/h)

]
dω,

B = 1
(2π)dhj+d

∫

Rd

q(ω, z)
∫

Rd\Dn

exp
[
i〈ω,y〉
h

]
(ĝn,h̃(y)− g(y))dydω,

C1 = 1
(2π)dhj+d

∫

Rd

q(ω, z)
∫

Dn

exp
[
i〈ω,y〉
h

]
(ĝn,h̃(y)− g(y))dydω,

with
q(ω, z) = (−iω)j exp

[
− i〈ω, z〉

h

] Fk(ω)
FΨ(ω/h)

and

Dn =
[
− 1
an
− 1

2nan
,

1
an

+ 1
2nan

]d
.

In the same way as in the proof of Lemma 3 in [3], but using (A6)–(A8), it can
be proved that A = oP (hs−j−1) and B = oP (hs−j−1). (Notice that (A6) sets some
restrictions on the order of magnitude of the auxiliary bandwidth h̃.) Further, rewrite
the difference C2 := E∗

(
θ̂

(j) ∗
n,h (z)

)
− E

(
θ̂

(j)
n,h(z)

)
as

C2 = 1
(2π)dhj+d

∫

Rd

q(ω, z)
[ ∑

r∈{−n,...,n}

1
ndadn

exp
( i〈ω, zr〉

h

)
(ĝn,h̃(zr)− g(zr))

]
dω.
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It is now easy to prove that

C1 − C2 = OP

(
1

nhβ+j+d+1ad+1
n

)
= oP

(
hs−j−1)

using Taylor series expansion and exploiting (A5) and (A8). This reasoning fails,
however, for the original construction in [3], because of difficulties with bounding
of C1 − C2.

To summarize:
– under assumptions (A1)–(A8), the bootstrap confidence intervals (2.6) are asymp-

totically valid, if nhd+1ad+1
n →∞, ndh2s+2β+d−2adn → 0 and nhβ+s+dad+1

n →∞.
Notice that the original confidence intervals (2.3) and our confidence intervals (2.6)

coincide, if the auxiliary bandwidth h̃ equals the main bandwidth h. Otherwise, the
two intervals are of equal length but they differ in centering.

Finally, even if condition (2.4) were true, our confidence intervals (2.6) based on
condition (2.5) perform much better in finite samples than the original intervals (2.3),
as will be seen in our simulation study.

3. SIMULATION RESULTS

Following [3], we used in simulations for d = 1 two true functions:

θ1(x) = exp[−(x− 1.1)2/(2 · 0.64)]

and

θ2(x) = exp[−(x− 0.2)2/(2 · 0.09)] + 1.2 exp[−(x− 0.85)2/(2 · 0.04)],

and the Laplace convolution kernel Ψ(x) = 1.5 exp(−3|x|). The sinc kernel was used
in the definition of the estimator. For each setup, 200 data sets were generated from
model (1.1) with Gaussian noise and confidence intervals were constructed for selected
values of the x-argument. The empirical coverages were computed as fractions. For each
data sample, 400 bootstrap samples were generated and the quantiles of the bootstrap
distribution were estimated with empirical quantiles. As in [3], the sampling distribution
for the residuals was constructed from the observations satisfying |zk| < 1/an − 2.01h.
All computations were performed in the R environment ver. 3.3.1. The convolutions
were numerically computed using the R function fft() and the Gaussian noise was
generated by means of the R function rnorm().

In order to cross-check our implementation with [3], we started with sample size
2n + 1 = 201, σ = 0.1 and an = 0.25. No indication was given in [3] how the
secondary bandwidth h̃ was chosen in simulations. With h̃ = h, i.e. in the case in
which the intervals (2.3) and (2.6) coincide, we obtained a very good agreement for
θ1(·), cf. Figure 1 with Figure 1 in [3]. We thus conjecture that h̃ = h was used in
simulations in [3], which would make the original intervals identical with ours and
valid, thus explaining their reasonable behaviour in the simulations described in [3].
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Fig. 1. Simulated coverage probabilities (solid) and interval length (dashed, multiplied by
a factor of 3) for 90% nominal coverage probability (dotted), for selected values of x as
functions of the bandwidth h, for the true Gaussian function θ1(x) and for 2n + 1 = 201,
σ = 0.1 and an = 0.25. The auxiliary bandwidth h̃ was taken equal to the main bandwidth h

For θ2(·), our Figure 2 and Figure 2 in [3] visibly differ. As Figure 3 in [3] clearly
shows a function different from that given as θ2(·) in p. 2368, it is not clear which
of those functions was actually used in [3], and we do not pursue that question any
further.

Next, to compare the global behaviour of both types of confidence intervals, we
ran the simulation with h̃ = 2h and averaged the empirical coverages over 16 x-values,
as in Table 1 in [3]. As clearly seen in Figure 3 and Figure 4, our modified intervals
keep the nominal confidence level in a long range of h-values and uniformly in h
dominate the intervals defined in [3]. Moreover, the empirical coverages of the latter
are significantly and uniformly too low, which, indeed, confirms our doubts about their
formal validity. A comparison of Figures 3 and 4 also shows, that smaller bandwidth
should be used for less regular functions, which is an expected conclusion.
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Fig. 2. Same as in Figure 1, but for the true bimodal function θ2(x)

Figure 5 illustrates the effect of various choices of the multiplier c in the relation
h̃ = ch. Larger c generally allows for more smoothing (i.e., larger h without losing
the coverage probability), and more smoothing makes the intervals shorter. On the
other hand, however, the larger c, the longer the intervals for a given h. In effect, as
illustrated in Figure 5 for the function θ1(·), c = 1.5 may be a reasonable choice in
the sense that it may produce the shortest intervals, provided h is optimally chosen
as the maximum value that still gives the assumed coverage probability. The difference
with respect to c = 1 is not large, however, at least for the example presented in
Figure 5.

The data driven choice of h is a much more critical and difficult issue.
An L∞-motivated approach was advocated in [3]. It consists in computing the es-
timators θ̂(j)

n,h(z) for bandwidths from an equidistantly spaced grid and “choosing
among these the largest bandwidth, where the supremum of the differences between
the estimators for two adjacent bandwidth steps exceeds a certain threshold”. This
method was introduced in [6] and the chosen bandwidth is believed to approximate
that minimizing the L∞ distance between the estimator and the true function.
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Fig. 3. Simulated coverage probabilities for original (dotdash) and new (solid) confidence
intervals, and interval length (dashed, multiplied by a factor of 3) for 90% nominal coverage
probability (dotted) averaged over 16 equidistant values of x approximately covering the
interval [-1,3] as functions of the bandwidth h, for the true Gaussian function θ1(·) and for
2n+ 1 = 201, σ = 0.1 and an = 0.25. The auxiliary bandwidth h̃ = 2h was used in this case

Fig. 4. Same as in Figure 3, but for the true bimodal function θ2(·)
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Fig. 5. Simulated coverage probabilities (black) and interval length (grey, multiplied by a
factor of 3) for the new intervals, for 90% nominal coverage probability (dotted), averaged
over 16 equidistant values of x approximately covering the interval [-1,3] as functions of
the bandwidth h, for the true Gaussian function θ1(·) and for 2n + 1 = 201, σ = 0.1 and
an = 0.25. Various choices of the auxiliary bandwidth correspond to various line patterns:

h̃ = h (solid), h̃ = 1.5h (dashed) and h̃ = 2h (dotdash)

According to our experience, that L∞ optimal bandwidth h could be too large when
confidence intervals are constructed. For instance, the L∞ optimal h for the function
θ2 (n = 100, σ = 0.1, an = 0.25) varies between 0.15 and 0.18 and the resulting actual
coverage probability is about 60-70%, with the nominal 90%. Contrary to the claims
in [3], it seems that undersmoothing might sometimes be necessary.

Our simulation experience with the data driven choice of h was rather pessimistic.
The method suggested in [3] did not reliably approximate the L∞ optimal bandwidth
and the obtained bandwidths were typically too small for the unimodal function
θ1 and much too large for the bimodal function θ2, when the confidence intervals
were constructed. Neither experimenting with the grid step and range for h, nor
attempts to adjust other parameters of the search algorithm, or even the algorithm
itself (e.g. employing local L∞ norms for seeking different bandwidths for different
points) brought any significant improvement.

We thus illustrate the performance of the confidence intervals with subjectively
selected bandwidth. For the Gaussian function θ1 and for a typical data set, the original
bootstrap confidence intervals from [3] are compared with our corrected version in
Figure 6, with the bandwidth h = 0.33 (cf. Figure 5). Analogous comparison for
the bimodal function θ2 is given in Figure 7 with h = 0.12. In both cases, h̃ = 1.5h
was used.
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Fig. 6. Nominal 90% bootstrap confidence intervals originally constructed in [3] (left panel)
and our corrected intervals (right panel) for a typical sample from the unimodal function θ1

(dashed) with n = 100, σ = 0.1, an = 0.25, h = 0.33 and h̃ = 1.5h

Fig. 7. Same as in Figure 6, but for the bimodal function θ2 and with h = 0.12
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