PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minimizing the explosion enthalpy of ammonium nitratewith polyethylene glycol and carboxymethyl celluloseto prevent terrorist attacks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of ammonium nitrate due to its high nitrogen content (>26%) has made it the most utilizedfertilizer in agricultural areas. However, being easily accessible with this feature encouraged its use fordifferent purposes. Ammonium nitrate is usually produced with large tonnage (>50ton/h) and highcost (>$20million) production processes. Therefore, any changes that can be made in the processmust be applied in the process so that the result can be achieved easily without increasing the costin any way. In this study, it is aimed to reduce the explosion sensitivity of ammonium nitrate usedfor explosive purposes in terrorist attacks. Thus, it was aimed to solve the problem by adding variouschemicals to the ammonium nitrate production process so that it can only be used for agriculturalpurposes. For this purpose, the production process was examined by adding carboxymethyl celluloseand polyethylene glycol to the ammonium nitrate production process and the accuracy of the resultswas tested by instrumental analysis methods
Rocznik
Strony
183--–195
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Yildiz Technical University, Department of Chemical Engineering, Istanbul Turkey
  • Toros Agri & Industry, Research & Development Center, Mersin, Turkey
Bibliografia
  • 1. Buczkowski D., Zygmunt B., 2011. Detonation properties of mixtures of ammonium nitrate based fertilizers and fuels. Cent. Eur. J. Energetic Mater., 8 (2), 99–106.
  • 2. Cordova P.F.P, Lopez L.A.C., 2012. Low density explosive emulsion. U.S. Patent No 8,187,397, Lima, 29 May 2012.
  • 3. Dobrilović M., Škrlec V., Bohanek V., 2013. Velocity of detonation of low density ANFO mixture. Proc. 16th Seminar on New Trends in Research of Energetic Materials, NTREM. Pardubice, Czech Republic, 10-12 April 2013, 2, 543–546.
  • 4. Fedorov A.B., Love B., 2016. Ammonium nitrate fuel oil mixtures. U.S. Patent No. 9,315,429. Ohio, 19 Apr. 2016.
  • 5. Gezerman A.O., 2017. A new chemical approach for preventing the anti-social use of ammonium nitrate. Eur. J. Chem., 8, 211–217. DOI: 10.5155/eurjchem.8.3.211-217.1577.
  • 6.Gezerman A.O., 2020. A novel industrial-scale strategy to prevent degradation and caking of ammonium nitrate. Heliyon, 6, e03628. DOI: 10.1016/j.heliyon.2020.e03628.
  • 7. Gezerman A.O., 2020. Mathematical modeling for prilling process in ammonium nitrate production. Eng. Rep., 2, 1–14. DOI: 10.1002/eng2.12173.
  • 8. Gezerman A.O., 2019. Downgrading of detonation properties of ammonium nitrate using calcium carbonate, dolomite, and fly ash. Sci. Technol. Energetic Mater., 80, 171–178.
  • 9. Gezerman A.O., Çorbacioglu B.D., 2017. Detonation properties of ammonium nitrate containing calcium carbonate, dolomite, and fly ash. Int. J. Energetic Mater. Chem. Propul., 16, 295–307. DOI: 10.1615/IntJEnergeticMaterialsChemProp.2017021206.
  • 10. Gezerman A.O., Çorbacıoğlu B.D., 2020. Development of a new ammonium nitrate composition: an attempt to prevent misuse of explosives for antisocial activities. J. Chin. Inst. Chem. Eng., 43, 101–110. DOI: 10.1080/02533839. 2019.1676650.
  • 11. Han Z., Sachdeva S., Papadaki M.I., Mannan M.S., 2015. Ammonium nitrate thermal decomposition with additives. J. Loss Prev. Process Ind., 35, 307–315. DOI: 10.1016/j.jlp.2014.10.011.
  • 12. Izato Y.I., Miyake A., 2015. Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures. J. Therm. Anal. Calorim., 121, 287–294. DOI: 10.1007/s10973-015-4739-1.
  • 13. Janesheski R.S., Groven L.J., Son S., 2012. Detonation failure characterization of non-ideal explosives. AIP Conf. Proc., 1426 , 587–590. DOI: 10.1063/1.3686347.
  • 14. Klimova I., Kaljuvee T., Türn L., Bender V., Trikkel A., Kuusik R., 2011. Interactions of ammonium nitrate with different additives. J. Therm. Anal. Calorim., 105, 13–26. DOI: 10.1007/s10973-011-1514-9.
  • 15. Levy A.B., Kweeder J.A., Carrazza J., Kunz K.D., 2014. U.S. Patent Application No. 12/499,598. Washington, 18 Feb. 2014. Lylykangas M., Kiiski H., Poukari J., Milborne R.J., 2012. U.S. Patent No. 8,110,018. Washington, DC: U.S. Patent and Trademark Office, 7 Feb. 2012.
  • 16. Menicacci E., Rotureau P., Fayet G., Adamo C., 2020. Toward the mechanistic understanding of the additives’ role on ammonium nitrate decomposition: Calcium carbonate and calcium sulfate as case studies. ACS Omega, 5, 5034–5040. DOI: 10.1021/acsomega.9b03964.
  • 17. Ouadday M., Dahmani H., Makni M., 2017. U.S. Patent Application No 15/304,342, Tunis. 16 Feb. 2017.
  • 18. Sinditskii V.P., Egorshev V.Yu., Levshenkov A.I., Serushkin V.V., 2005. Ammonium nitrate: Combustion mechanism and the role of additives. Propellants Explos. Pyrotech., 30, 269–280. DOI: 10.1002/prep.200500017.
  • 19. Smith M., 2019, 2019. U.S. Patent No. 10,183,898. West Virginia, 22 Jan. 2019.
  • 20. Tan L., Xia L.H., Wu Q.J., Xu S., Liu D.B., 2015. Effect of urea on detonation characteristics and thermal stability of ammonium nitrate. J. Loss Prev. Process Ind., 38, 169–175. DOI: 10.1016/j.jlp.2015.09.012.
  • 21. Tan L., Wu Q., Chen X., Jiang W., Xu S., Liu D., 2014. The effects of sodium chloride on the explosive performance of ammonium nitrate. J. Therm. Anal. Calorim., 115, 1759–1766. DOI: 10.1007/s10973-013-3435-2.
  • 22. Tan L., Xia L. H., Wu Q.J., Xu S., Liu D.B., 2016. Detonation characteristics of ammonium nitrate and activated fertilizer mixtures. Combust. Explosion Shock Waves, 52, 335–341. DOI: 10.1134/S0010508216030138.
  • 23. Taulbee, D. N., 2010. U.S. Patent No. 7,785,553. Washington, DC: U.S. Patent and Trademark Office. 31 Aug. 2010.
  • 24. Videla A.R., Polancoa C., Escalona N., 2017. Phenomenological model of the effect of organic polymer addition on the control of ammonium nitrate caking. Powder Technol., 315, 114–125. DOI: 10.1016/j.powtec.2017.03.041.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-258257a1-7648-4e3b-a2a0-80042cfa6559
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.