PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The effect of changing graphitization temperature toward bio-graphite from Palm Kernel Shell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the relationship between heat treatment temperature toward structural transformation from amorphous carbon to highly graphitic carbon material during a production stage.The following report discusses a simple strategy to convert the palm kernel shell (PKS) into highly crystalline, high quality graphite via simple two-step process. The production involves impregnation of catalyst followed by thermal treatment. Both XRD and Raman spectroscopy allowed the observation of microstructural change of the prepared sample at temperature ranging from 1000°C to 1400°C using Ferum catalyst. From XRD pattern it can be observed that as graphitization temperature increased, the degree of graphitization also increased. Overall sample prepared at higher temperature 1400°C shows a higher degree of graphitization. PKS sample graphitized at 1400°C with the aid of Ferum catalyst shows a sharp intensified peak at 2θ = 26.5° reflecting formation of highly crystalline graphite structure. Raman spectrum also suggests similar results to XRD in which PKS-1400 shows the presence of large amount of graphitic structure as the value of (Id/Ig) ratio is lower than in other samples. HRTEM analysis visibly shows define lattice fringe, which further confirms the structural transformation from amorphous to highly ordered graphitic carbon structure. Overall, good quality graphitic carbon structure from Palm Kernel shell was succesfully synthesised via utilization of PKS, Ferum catalsyt and heat treatment method.
Rocznik
Strony
124--129
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), Lot 1988 Vendor City, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia
  • Department of Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), Lot 1988 Vendor City, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia
  • Universiti Kuala Lumpur Malaysian Institute of Aviation Technology, Malaysia
Bibliografia
  • 1. Albert, T., Mills Inc., 2006. An Introduction to Synthetic Graphite. Introduction to Synthetic Graphite, Available at: https://asbury.com/pdf/SyntheticGraphitePartI.pdf (Accessed: 17 January 2019).
  • 2. Banek, N.A. et al., 2018. Sustainable Conversion of Lignocellulose to HighPurity, Highly Crystalline Flake Potato Graphite, ACS Sustainable Chemistry and Engineering, 6(10), 13199-13207. DOI: 10.1021/acssuschemeng.8b02799.
  • 3. Chehreh Chelgani, S. et al., 2016. A Review of Graphite Beneficiation Techniques, Mineral Processing and Extractive Metallurgy Review, 37(1), 58-68, DOI: 10.1080/08827508.2015.1115992.
  • 4. Chen, C. et al., 2018. Catalytic graphitization of cellulose using nickel as catalyst, BioResources, 13(2), 3165-3176, DOI: 10.15376/biores.13.2.3165-3176.
  • 5. Cioca, M. and Cioc, L.I., 2010. Decision Support Systems used in Disaster Management, Decision Support Systems, (January), DOI: 10.5772/39452.
  • 6. Dalton, O.S., Mohamed, A.F., Chikere, A.O., 2017. Status Evaluation of Palm Oil Waste Management Sustainability in Malaysia, OIDA International Journal of Sustainable Development, 10(12), 41-48.
  • 7. Demir, M. et al., 2015. Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin, Industrial & Engineering Chemistry Research, 54(43), 10731-10739, DOI: 10.1021/acs.iecr.5b02614.
  • 8. Dungani, R. et al., 2018. Biomaterial from Oil Palm Waste: Properties, Characterization and Applications, Palm Oil, DOI: 10.5772/intechopen.76412.
  • 9. Fromm, O. et al., 2018. Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance, Carbon, Elsevier Ltd, 128, 147-163, DOI: 10.1016/j.carbon.2017.11.065.
  • 10. Gupta, A. et al., 2017. Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers, Diamond and Related Materials, Elsevier, 78, 31-38, DOI: 10.1016/J.DIAMOND.2017.07.006.
  • 11. Gutiérrez-Pardo, A. et al., 2015. Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors, Journal of Power Sources, 278, 18-26, DOI: 10.1016/j.jpowsour.2014.12.030.
  • 12. Hoekstra, J. et al., 2015. Base metal catalyzed graphitization of cellulose: A combined Raman spectroscopy, temperature-dependent X-ray diffraction and high-resolution transmission electron microscopy study, Journal of Physical Chemistry C, 119(19), 10653-10661, DOI: 10.1021/acs.jpcc.5b00477.
  • 13. Hoekstra, J. et al., 2016. The effect of iron catalyzed graphitization on the textural properties of carbonized cellulose: Magnetically separable graphitic carbon bodies for catalysis and remediation, Carbon, Elsevier Ltd, 107, 248-260, DOI: 10.1016/j.carbon.2016.05.065.
  • 14. Hou, L. et al., 2019. Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors, Journal of Colloid and Interface Science, Elsevier Inc., 540, 88-96, DOI: 10.1016/j.jcis.2018.12.029.
  • 15. Ishchuk, S., Sozanskyy, L., Pukała, R., 2020. Optimisation of the relationship between structural parameters of the processing industry as a way to increase its efficiency, Engineering Management in Production and Services, 12(2), 7-20, DOI: 10.2478/emj-2020-0008.
  • 16. Jabarullah, N.H., 2016. The controversy of biofuel versus fossil fuel, International Journal of Advanced and Applied Sciences, 3(2), 11-14.
  • 17. Johnson, M.T., Faber, K.T., 2011, Catalytic graphitization of threedimensional wood-derived porous scaffolds, Journal of Materials Research, 26(01), 18-25, DOI: 10.1557/jmr.2010.88.
  • 18. Johnson, M.T.T., Faber, K.T.T., 2011. Catalytic graphitization of threedimensional wood-derived porous scaffolds, Journal of Materials Research, 26(01), 18-25, DOI: 10.1557/jmr.2010.88.
  • 19. Käärik, M. et al., 2008. The effect of graphitization catalyst on the structure and porosity of SiC derived carbons, Carbon, 46(12), 1579-1587, DOI: 10.1016/j.carbon.2008.07.003.
  • 20. Kalyoncu, R.S., 2000. Graphite, U.S. Geological Survey Minerals Yearbook Vol . I, Metals & Minerals, 1076.
  • 21. Khokhlova, G.P. et al., 2015. Effect of heat treatment conditions on the catalytic graphitization of coal-tar pitch, Solid Fuel Chemistry, 49(2), 66- 72, DOI: 10.3103/S0361521915020056.
  • 22. Kim, T., Lee, J., Lee, K.H., 2016. Full graphitization of amorphous carbon by microwave heating †, DOI: 10.1039/c6ra01989g.
  • 23. King, R.J., 2006. Minerals explained 43: Graphite, in Geology Today. Blackwell Publishing Inc., 71-77.
  • 24. Kučerová, M. et al., 2015. Eliminating waste in the production process using tools and methods of industrial engineering, Production Engineering Archives, 9, 30-34, DOI: 10.30657/pea.2015.09.08.
  • 25. Lim, Y. et al., 2017. Increase in graphitization and electrical conductivity of glassy carbon nanowires by rapid thermal annealing, Journal of Alloys and Compounds. Elsevier, 702, 465-471, DOI: 10.1016/J.JALLCOM.2017.01.098.
  • 26. Lisiecka, B. et al., 2018. Obtaining of biomorphic composites based on carbon materials, Production Engineering Archives, 19(19), 22-25, DOI: 10.30657/pea.2018.19.05.
  • 27. Liu, Y. et al., 2013. Highly porous graphitic materials prepared by catalytic graphitization, Carbon, 64, 132-140, DOI: 10.1016/j.carbon.2013.07.044.
  • 28. Lovás, M. et al., 2011. The application of microwave energy in mineral processing - a review, Acta Montanistica Slovaca, 16(2), 137-148.
  • 29. Ma, Z. et al., 2017. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures, Journal of Analytical and Applied Pyrolysis. Elsevier B.V., 127, 350-359, DOI: 10.1016/j.jaap.2017.07.015.
  • 30. Made Joni, I. et al., 2018. Augmentation of graphite purity from mineral resources and enhancing % graphitization using microwave irradiation: XRD and Raman studies, Diamond and Related Materials, 88, 129-136, DOI: 10.1016/j.diamond.2018.07.009.
  • 31. Major, I. et al., 2018. Graphitization of Miscanthus grass biocarbon enhanced by in situ generated FeCo nanoparticles, 20, 2269, DOI: 10.1039/c7gc03457a.
  • 32. McKee, D.W., 1973. Carbon and Graphite Science, Annual Review of Materials Science, 3(1), 195-231, DOI: 10.1146/annurev.ms.03.080173.001211.
  • 33. Nettelroth, D. et al., 2016. Catalytic graphitization of ordered mesoporous carbon CMK-3 with iron oxide catalysts: Evaluation of different synthesis pathways, Physica Status Solidi (A) Applications and Materials Science, 213(6), 1395-1402, DOI: 10.1002/pssa.201532796.
  • 34. Pacana, A., Ulewicz, R., 2017. Research of determinations motiving to implement the environmental management system, Polish Journal of Management Studies, 16(1), 165-174, DOI: 10.17512/pjms.2017.16.1.14.
  • 35. Paun, V.A. et al., 2016. Liposome loaded chitosan hydrogels, a promising way to reduce the burst effect in drug release a comparativ analysis, Materiale Plastice, 53(4), 590-593.
  • 36. Rada, E.C. et al., 2018. Circular economy and waste to energy, AIP Conference Proceedings, 1968, DOI: 10.1063/1.5039237.
  • 37. Rada, E.C., Cioca, L., 2017. Optimizing the Methodology of Characterization of Municipal Solid Waste in EU under a Circular Economy Perspective, Energy Procedia, 119, 72-85, DOI: 10.1016/j.egypro.2017.07.050.
  • 38. Radzyminska-Lenarcik, E., Ulewicz, R., Ulewicz, M., 2018. Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4-methylimidazole, Desalination and Water Treatment, 102 (January 2008), 211-219, DOI: 10.5004/dwt.2018.21826.
  • 39. Samsul, A., Othman, R., Jabarullah, N.H., 2020. Preparation and synthesis of synthetic graphite from biomass waste : A review, 11(2), 881-894.
  • 40. Sevilla, M., Sanchís, C., Valdés-Soh, T., et al., 2007. Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports, Journal of Physical Chemistry C, 111(27), 9749- 9756, DOI: 10.1021/jp072246x.
  • 41. Sevilla, M., Sanchís, C., Valdés-Solís, T., et al., 2007. Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports, Journal of Physical Chemistry C, 111(27), 9749- 9756, DOI: 10.1021/jp072246x.
  • 42. Sevilla, M., Fuertes, A.B., 2010. Graphitic carbon nanostructures from cellulose, Chemical Physics Letters. Elsevier B.V., 490(1-3), 63-68, DOI: 10.1016/j.cplett.2010.03.011.
  • 43. Shi, J. et al., 2016. Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application, Carbon. Elsevier Ltd, 99, 330-337, DOI: 10.1016/j.carbon.2015.12.049.
  • 44. Slovaca, A.M., Cehl, M., 2016. New approach to the basic evaluation of raw material resources in market economy, Acta Montanistica Slovaca, 6(January), 42-55.
  • 45. Sultana, K.N. et al., 2019. Synthesis of Graphitic Mesoporous Carbon from Metal Impregnated Silica Template for Proton Exchange Membrane Fuel Cell Application, (1), 27-34, DOI: 10.1002/fuce.201800034.
  • 46. Thambiliyagodage, C.J. et al., 2018. Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles, Carbon. Elsevier Ltd, 134, 452-463, DOI: 10.1016/j.carbon.2018.04.002.
  • 47. Thompson, E. et al., 2015. Iron-catalyzed graphitization of biomass, Green Chemistry, Royal Society of Chemistry, 17(1), 551-556, DOI: 10.1039/c4gc01673d.
  • 48. Vázquez-Santos, M.B. et al., 2012. Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers, Journal of Physical Chemistry C, 116(1), 257-268, DOI: 10.1021/jp2084499.
  • 49. Xia, J. et al., 2018. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor, Green Chemistry, 20(3), 694-700, DOI: 10.1039/c7gc03426a.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-257fb91c-c4fd-40e1-9351-d4b416795e7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.