Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper is concerned with the Sommerfeld effect (Jump phenomena) attenuation in an non-ideal mechanical oscillator connected with an unbalanced motor excitation with a limited power supply (non-ideal system) using a magnetorheological damper (MRD). The dynamical response of systems with MRD presents different behavior due to their nonlinear characteristic. MRD nonlinear response is associated with adaptive dissipation related to their hysteretic behavior. The Bouc-Wen mathematical model is used to represent the MRD behavior. Numerical simulations show different aspects about the Sommerfeld effect, illustrating the influence of the different electric current applied in the MRD to control the force developed by this damper.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
595--604
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- UTFPR – Federal Technological University of Paran´a, Department of Mathematics, Ponta Grossa, Brazil
autor
- UTFPR – Federal Technological University of Paran´a, Department of Mathematics, Ponta Grossa, Brazil
autor
- UNESP – São Paulo State University, Department of Statistics, Applied Mathematical and Computation, Rio Claro, Brazil
Bibliografia
- 1. Balthazar J.M., Mook D.T., Weber H.I., Brasil R.M.F.L.R.F., Fenili A., Belato D., Felix J.L.P., 2003, An overview on non-ideal vibrations, Meccanica, 38, 613-621
- 2. Belato D., 1998, N˜ao-linearidades no Eletro Pˆendulo, MSc Dissertation, State University of Campinas, Brazil
- 3. Cast˜ao K.A.L., Góes L.C.S., Balthazar J.M., 2010, A note on the attenuation of the Sommerfeld effect of a non-ideal system taking into account MR damper and the complete model of a DC motor, Journal of Vibration and Control, 17, 1112-1118
- 4. Dominguez A., Sedaghati R., Stiharu I., 2006, A new dynamic hysteresis model for magnetorheological dampers, Smart Material and Structures, 15, 1179-1189
- 5. Felix J.L.P, Balthazar J.M., Brasil R.M.L.R.F., 2009a, Comments on nonlinear Dynamics of non-ideal Duffing-Rayleigh oscillator: numerical and analytical approaches, Journal of Sound and Vibration, 319, 1136-1149
- 6. Felix J.L.P., Balthazar J.M., Brasil R.M.L.R.F., Pontes Jr B.R., 2009b, On Lugre friction model to mitigate nonideal vibrations, Journal of Computation and Nonlinear Dynamics, 4, 034503-1-034503-5
- 7. Frolov K.V., Krasnopolskaya T.S., 1987, Sommerfeld effect in system without internal damping, Soviet Applied Mechanics, 23, 1122-1126
- 8. Konokenko V.O., 1969, Vibrating Problems with a Limited Power Supply, Illife, London
- 9. Krasnopolskaya T.S., Shvets A.Yu., 1994, Chaotic surface waves in limited power-supply cylindrical tank vibrations, Journal of Fluids and Structures, 8, 1-18
- 10. Ma X.Q., Wang E.R., Rakheja S., Su C.Y., 2003, Evaluation of modified hysteresis models for magnetorheological fluid dampers, The Fourth International Conference on Control and Automation (ICCA’03), Montreal, Canada
- 11. McManus S.J., St. Clair A., Boileau P.E., Boutin J., Rakheja S., 2002, Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magnetorheological fluid damper, Journal of Sound and Vibration, 253, 313-327
- 12. Nayfeh A.H., Mook D.T., 1979, Nonlinear Oscillations, New York: Wiley-Interscience
- 13. Palacios et al., 2009a, ????????????? (in Introduction)
- 14. Piccirillo V., Balthazar J.M., Pontes Jr B.R., Felix J.L.P., 2008, On a nonlinear and chaotic non-ideal vibrating system with shape memory alloy (SMA), Journal of Theoretical and Applied Mechanics, 46, 597-620
- 15. Piccirillo V., Balthazar J.M., Pontes Jr. B.R., Felix J.L.P., 2009, Chaos control of a nonlinear oscillator with shape memory alloy using an optimal linear control: Part II: Non-ideal energy source, Nonlinear Dynamics, 55, 139-149
- 16. Piccirillo V., Góes L.C.S., Balthazar J.M., 2011, Some remarks on bifurcation analysis of a nonlinear vibrationg system excited by a shape memory material (SMA), International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 21, 2975-2982
- 17. Spencer Jr. B.F., Dyke S.J., Sain M.K., Carlson J.D., 1997, Phenomenological model of a magnetorheological damper, ASCE Journal of Engineering Mechanics, 3, 230-238
- 18. Tusset A.M., Balthazar J.M., 2013, On the chaotic suppression of both ideal and non-ideal Duffing based vibrating systems, using a magneto rheological damper, Differential Equations and Dynamical Systems, 21, 105-121
- 19. Tusset A.M., Balthazar J.M., Felix J.L.P., 2013, On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls, Journal of Vibration and Control, 19, 803-813
- 20. Tusset A.M., Rafikov M., Balthazar J.M., 2009, An intelligent controller design for magnetorheological damper based on quarter-car model, Journal of Vibration and Control, 12, 1907-1920
- 21. Wang D.H., Liao W.H., 2011, Magnetorheological fluid dampers: a review of parametric modeling, Smart Materials and Structures, 20, 1-34
- 22. Warminski J., Balthazar J.M., 2003, Vibrations of a parametrically and self-excited system with ideal and nonideal energy source, RBCM – Journal of the Brazilian Society Mechanical Sciences, 25, 413-420
- 23. Yao G.Z., Yap F.F., Chen G., Li W.H., Yeo S.H., 2002, MR damper and its application for semi-active control of vehicle suspension system, Mechatronics, 12, 963-973
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-257b8a1e-9c8f-45cf-acda-ba6f9c2b44df