Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Vertical-axial tidal current turbine is the key for the energy converter, which has the advantages of simple structure, adaptability to flow and uncomplex convection device. It has become the hot point for research and application recently. At present, the study on the hydrodynamic performance of vertical-axial tidal current turbine is almost on 2-D numerical simulation, without the consideration of 3-D effect. CFD (Computational Fluid Dynamics) method and blade optimal control technique are used to improve accuracy in the prediction of tidal current turbine hydrodynamic performance. Numerical simulation of vertical-axial tidal current turbine is validated. Fixed and variable deflection angle turbine are comparatively studied to analysis the influence of 3-D effect and the character of fluid field and pressure field. The method, put the plate on the end of blade, of reduce the energy loss caused by 3-D effect is proposed. The 3-D CFD numerical model of vertical-axial tidal current turbine hydrodynamic performance in this study may provide theoretical, methodical and technical reference for the optimal design of turbine.
Czasopismo
Rocznik
Tom
Strony
73--83
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Shipbuilding Engineering Collage Harbin Engineering University Heilongjiang, Harbin, 150001 China
autor
- Shipbuilding Engineering Collage Harbin Engineering University Heilongjiang, Harbin, 150001 China
autor
- Shipbuilding Engineering Collage Harbin Engineering University Heilongjiang, Harbin, 150001 China
autor
- Shipbuilding Engineering Collage Harbin Engineering University Heilongjiang, Harbin, 150001 China
autor
- Shipbuilding Engineering Collage Harbin Engineering University Heilongjiang, Harbin, 150001 China
Bibliografia
- 1. F L Ponta, P M Jacovkis. A vortex model for Darrieus turbine using finite element techniques. Renewable Energy, 2001, 24:1-18.
- 2. G Beer, I Smith, C Duenser. The Boundary Element Method with Programming: For Engineers and Scientists, SpringerVerlag, New York, 2008.
- 3. Guerri, O., Sakout, A. and Bouhadef, K., Simulations of the Fluid Flow around a rotating Vertical Axis Wind Turbine, Wind Engineering, 2007, 31(3):149-163
- 4. H F Hassan, A El-Shafie, O A Karim. Tidal current turbines glance at the past and look into future prospects in Malaysia. Renewable and Sustainable Energy Reviews, 2012 16: 5707-17
- 5. Hamada, K., Smithb, T., Durrani, N., Qind, N. and Howell, R.,Unsteady Flow Simulation and Dynamic Stall around Vertical Axis Wind Turbine Blades, AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 7-10 January 2008.
- 6. Horiuchi, K., Ushiyama, I., and Seki, K., Straight Wing Vertical Axis Wind Turbine: A Flow Analysis, Wind Engineering,May 2005, 29(3):243-252
- 7. H Versteeg, W Malalasekra. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Prentice-Hall, Upper Saddle River, NJ, 2007.
- 8. I G Bryden, S J Couch, A Owen et al. Tidal current resource assessment. Proceedings of the Institution of Mechanical Engineering Part A Journal of Power and Energy, 2007 221(2): 125-135
- 9. J C Tannehill, D A Anderson, R H Pletcher. Computational Fluid Mechanics and Heat Transfer, 2d ed., Taylor and Francis, Bristol, PA, 1997.
- 10. J D Anderson, Jr. Fundamentals of Aerodynamics, 4th ed., McGraw-Hill, New York, 2007.
- 11. J. Jiang, Analysis of vertical-axial turbine hydrodynamic performance and application and development of optimal design [D], Harbin: Ph.D. thesis in Harbin Engineering University, 2012.
- 12. J N Newman, Marine Hydrodynamics, M.I.T. Press, Cambridge, MA, 1977.
- 13. J Tu, G H Yeoh, C Liu. Computational Fluid Dynamics: A Practical Approach, Butterworth-Heinemann, New York, 2007.
- 14. Koukina, E., Kanner, S., and Yeung, R. W., “Actuation of Wind-Loading Torque on Vertical Axis Turbines at Model Scale”, Proceedings, Oceans’15, Marine Technology Society/IEEE, Paper 141206-002, Genoa, Italy, May18-21,2015
- 15. L S Blunden, A S Bahaj. Tidal energy resource assessment for tidal stream generators. Proceedings of the Institution of Mechanical Engineering Part A Journal of Power and Energy, 2007 221(2): 137-146
- 16. L Zhang, Q J Luo, R G Han, Deflection angle optimization of vertical axis tidal current turbine. Journal of Harbin Institute of Technology, 2011 43 (sup1): pp. 281-285.
- 17. M.S.U.K. Fernando and V.J. Modi. A Numerical Analysis of the Unsteady Flow Past a Savonius Wind Turbine. J. Wind Engineering & Industrial Aerodynamics. October 1989,32(3),303-327P
- 18. Sun Ke, Numerical simulation of H type verticalaxial turbine and deflector, HEU Ph.D. thesis, 2008: pp. 44-51
- 19. T Cebeci. Computational Fluid Dynamics for engineers. Springer-Verlag, New York, 2005.
- 20. Y Li. Development of a Procedure for Predicting the Power Output from a Tidal Current Turbine Farm, PhD thesis, University of British Columbia, Vancouver, B.C.,Canada, 2008
- 21. M Tomera. Dynamic positioning system for a ship on harbour manoeuvringwith different observers. Experimental results. Polish Maritime Research. SEP 2014, 21(3): 13-24.
- 22. Y Li, S M Calisal. Modeling oftwin-turbinesystemswithve rticalaxistidalcurrentturbines: Polish Maritime Research, 2010 37: 627-637
- 23. Y Li, S M Calisal. Modeling oftwin-turbinesystemswithver ticalaxistidalcurrentturbines: Part II—torque flauctuation. Ocean Engineering, 2011 38: 550-558
- 24. V V Klemas, Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. Journal of Coastal Research. SEP 2015, 31(5): 1260-1267.
- 25. Z C Li, L Zhang, K Sun, X W Zhang, Numerical simulation of vertical axis tidal current turbine. ACTA ENERGY SOLARS SINICA, 2011 32 (9): pp. 1321-1326.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2579d51a-258f-44ef-aff4-784a30440890