PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of dilatancy angle in plasticity-based models of concrete

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The so-called concrete damaged plasticity (CDP) model is frequently employed by ABAQUS users to simulate the behaviour of concrete. One important aspect of the model, namely the representation of material dilatancy, is evaluated in the paper. The role of the dilatancy angle in pressure-dependent plasticity models is reviewed. The plastic potential adopted in the CDP model is discussed. It is shown that the definitions of the angle in the CDP model and in the Burzynski–Drucker–Prager (BDP) plasticity model for a continuum can lead to different angle magnitudes. Two tests on concrete configurations are simulated to illustrate how strongly the angle influences the results: the Kupfer benchmark of a panel under uniaxial or biaxial compression and the punching shear response in a slab-column connection. The importance of viscosity in cracking simulation is thereby mentioned, the results are compared with experimental ones and mesh sensitivity is verified. Recommendations for analysis of concrete mechanics problems are formulated.
Rocznik
Strony
1268--1283
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
  • Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
  • Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
autor
  • Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • [1] O. Reynolds, LVII. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations, The London, Edinburgh, and Dublin Philosophical Magazine and J. Sci. 20 (127) (1885) 469–481.
  • [2] P.A. Vermeer, R. de Borst, Non-associated plasticity for soils, concrete and rock, Heron 29 (3) (1984) 1–64.
  • [3] G.T. Houlsby, How the dilatancy of soils affects their behaviour, Tech, Rep. OUEL 1888/91, Department of Engineering Science, University of Oxford, Oxford, 1991, presented at the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Italy.
  • [4] J. Lubliner, J. Oliver, S. Oller, E. O nate, A plastic-damage model for concrete, Int. J. Solids Struct. 25 (3) (1989) 299–326.
  • [5] R. de Borst, A. Groen, Some observations on element performance in isochoric and dilatant plastic flow, Int. J. Numer. Meth. Eng. 38 (1995) 2887–2906.
  • [6] J. Lee, G.L. Fenves, Plastic-damage model for cyclic loading of concrete structures, ASCE J. Eng. Mech. 124 (8) (1998) 892–900.
  • [7] I. Imran, S.J. Pantazopoulou, Plasticity model for concrete under triaxial compression, ASCE J. Eng. Mech. 127 (3) (2001) 281–290.
  • [8] SIMULIA, Abaqus Theory Manual (6.14), Dassault Systemes, Providence, RI, USA (2014).
  • [9] B. Adetifa, M.A. Polak, Retrofit of interior slab-column connections for punching using shear bolts, ACI Struct. J. 102 (2) (2005) 268–274.
  • [10] P. Menétrey, Synthesis of punching failure in reinforced concrete, Cement Concrete Composites 24 (2002) 497–507.
  • [11] T. S. Urban, Punching in concrete. Selected problems., Monograph 959, Lódz Technical University, Lódz, (in Polish) (2005).
  • [12] A. Muttoni, Punching shear strength of reinforced concrete slabs without transverse reinforcement, ACI Structural J. 105 (4) (2008) 440–450.
  • [13] R. de Borst, P. Nauta, Non-orthogonal cracks in a smeared finite element model, Eng. Comput. 2 (1) (1985) 35–46.
  • [14] P. Menétrey, R. Walther, T. Zimmermann, K.J. Willam, P. Regan, Simulation of punching failure in reinforced-concrete structures, ASCE J. Struct. Eng. 123 (5) (1997) 652–659.
  • [15] M. Hallgren, M. Bjerke, Non-linear element analyses of punching shear failure of column footings, Cement Concrete Composites 24 (2002) 491–496.
  • [16] M.A. Polak, Modelling punching shear of reinforce concrete slabs using layered finite elements, ACI Struct. J. 95 (1) (1998) 71–80.
  • [17] A.S. Genikomsou, M.A. Polak, Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS, Eng. Struct. 98 (2015) 38–48.
  • [18] C.Y.M. Goh, T.D. Hrynyk, Numerical investigation of the punching resistance of reinforced concrete flat plates, ASCE J. Struct. Eng. 144 (10) (2018) 04018166.
  • [19] W.F. Chen, D.J. Han, Plasticity for Structural Engineers, Springer-Verlag, New York, 1988.
  • [20] E. de Souza Neto, D. Peric, D. Owen, Computational Methods for Plasticity. Theory and Applications, John Wiley & Sons, Ltd, Chichester, UK, 2008.
  • [21] S. Pietruszczak, Fundamentals of Plasticity in Geomechanics, CRC Press, Boca Raton, 2010.
  • [22] H. van der Veen, C. Vuik, R. de Borst, An eigenvalue analysis of nonassociated plasticity, Comput. Math. Appl. 38 (9-10) (1999) 107–115.
  • [23] M. Jirasek, Z.P. Bažant, Inelastic Analysis of Structures, J. Wiley & Sons, Chichester, 2002.
  • [24] A. Hillerborg, M. Modeer, P.E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement Concrete Res. 6 (1976) 773–782.
  • [25] Z.P. Bažant, B. Oh, Crack band theory for fracture of concrete, RILEM Mater. Struct. 16 (1983) 155–177.
  • [26] A. Wosatko, A. Genikomsou, J. Pamin, M.A. Polak, A. Winnicki, Examination of two regularized damage-plasticity models for concrete with regard to crack closing, Eng. Fract. Mech. 194 (2018) 190–211.
  • [27] I. Kaminska, A. Szwed, On calibration of parameters of constitutive model for concrete and laboratory experiments used for this purpose, in: E. Szmigiera, P. Lukowski, S. Jemiolo (Eds.), Concrete and Concrete Structures - Research, Printing House of Warsaw University of Technology, Warsaw, 2015 93–110 (in Polish).
  • [28] P. Kmiecik, M. Kaminski, Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration, Arch. Civ. Mech. Eng. 11 (3) (2011) 623–636.
  • [29] I. Jankowiak, Analysis of RC beams strengthened by CFRP strips - Experimental and FEA study, Arch. Civ. Mech. Eng. 12 (3) (2012) 376–388.
  • [30] A. Earij, G. Alfano, K. Cashell, X. Zhou, Nonlinear three-dimensional finite-element modelling of reinforced-concrete beams: Computational challenges and experimental validation, Eng. Fail. Anal. 82 (2017) 92–115.
  • [31] G. Duvaut, I.J. Lions, Les Inequations en Mechanique et en Physique, Dunod, Paris, France, 1972.
  • [32] J. Lee, G.L. Fenves, A plastic-damage concrete model for earthquake analysis of dams, Earthquake Eng. Struct. Dyn. 27 (1998) 937–956.
  • [33] A. Wosatko, J. Pamin, M.A. Polak, Application of damage- plasticity models in finite element analysis of punching shear, Comput. Struct. 151 (2015) 73–85.
  • [34] M. Szczecina, A. Winnicki, Relaxation time in CDP model used for analyses of RC structures, Procedia Eng. 193 (2017) 369–376.
  • [35] S.J. Green, S.R. Swanson, Static constitutive relations for concrete, Tech. Rep. AFWL-TR-72-244, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, 1973.
  • [36] T. Jankowiak, T. Lodygowski, Identification of parameters of concrete damage plasticity constitutive model, Found. Civil Environ. Eng. 6 (2005) 53–69.
  • [37] H. Kupfer, H.K. Hilsdorf, H. Rusch, Behavior of concrete under biaxial stresses, Am. Concrete Inst.-J. 66 (8) (1969) 655–666.
  • [38] L.R. Alejano, E. Alonso, Considerations of the dilatancy angle in rock and rock masses, Int. J. Rock Mech. Mining Sci. 42 (2015) 481–507.
  • [39] T. Yu, J.G. Teng, Y.L. Wong, S.L. Dong, Finite element modeling of confined concrete-II: Plastic-damage model, Eng. Struct. 32 (3) (2010) 680–691.
  • [40] D.P. Flanagan, T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Meth. Engng 17 (5) (1981) 679–706.
  • [41] T. Belytschko, L.P. Bindeman, Assumed strain stabilization of the eightnode hexahedral element, Comput. Methods Appl. Mech. Engrg. 105 (1993) 225–260.
  • [42] E. Riks, An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct. 15 (7) (1979) 529–551.
  • [43] A.S. Genikomsou, M.A. Polak, Finite-element analysis of reinforced concrete slabs with punching shear reinforcement, ASCE J. Struct. Eng. 142 (12) (2016) 04016129.
  • [44] fib (Ed.), fib Model Code for Concrete Structures 2010, Ernst & Sohn, Lausanne, 2013.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2573c2ff-a9cb-4715-abb7-995e0de52da1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.