PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue failure analysis of three-layer Zr–Ti/Zr–Steel composite plates: an insight into the evolution of cracks initiated at the interfaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Initiation and evolution of fatigue cracks at the interfaces in three-layer Zr–Ti/Zr–Steel composites is herein examined by in situ optical microscopy for the first time. Specimens cut out from three composite plates comprising Zr 700, Ti Gr. 1, and P265GH steel layers have been subjected to uniaxial fatigue cyclic loading. It is found that mechanical property mismatch between layers and defects at the interfaces can reduce the fatigue life of composite plates. An insight into the evolution of cracks initiated at the interfaces reveals that (1) most of the cracks grow into adjacent layers along two distinct planes, and (2) these cracks could lead to the fatigue failure of composites. One of these planes coincides with the adiabatic shear band orientation found in Ti Gr. 1 and Zr 700 layers. The interfaces in multilayer metallic composite could have excellent fatigue strength depending on their structural properties.
Rocznik
Strony
604--616
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
Bibliografia
  • [1] Chao RM, Yang JM, Lay SR. Interfacial toughness for the ship-board aluminum/steel structural transition joint. Mar Struct. 1997;10:353–62. https ://doi.org/10.1016/s0951 -8339(96)00018-4.
  • [2] Corigliano P, Crupi V, Guglielmino E. Non linear finite element simulation of explosive welded joints of dissimilar metals for shipbuilding applications. Ocean Eng. 2018;160:346–53. https ://doi.org/10.1016/j.ocean eng.2018.04.070.
  • [3] Aceves SM, Espinosa-Loza F, Elmer JW, Huber R. Comparison of Cu, Ti and Ta interlayer explosively fabricated aluminum to stainless steel transition joints for cryogenic pressurized hydrogen storage. Int J Hydrogen Energy. 2015;40:1490–503. https ://doi.org/10.1016/j.ijhyd ene.2014.11.038.
  • [4] Carvalho GHSFL, Galvão I, Mendes R, Leal RM, Loureiro A. Explosive welding of aluminium to stainless steel using carbon steel and niobium interlayers. J Mater Process Technol. 2020;283(2020):116707. https ://doi.org/10.1016/j.jmatp rotec.2020.11670 7.
  • [5] Gullino A, Matteis P, Aiuto FD. Review of aluminum-to-steel welding technologies for car-body applications. Metals (Basel). 2019;9:1–28. https ://doi.org/10.3390/met90 30315.
  • [6] Mroz S, Stradomski G, Dyja H, Galka A. Using the explosive cladding method for production of Mg-Al bimetallic bars. Arch Civ Mech Eng. 2015;15:317–23. https ://doi.org/10.1016/j.acme.2014.12.003.
  • [7] Mola R, Mroz S, Szota P. Effects of the process parameters on the formability of the intermetallic zone in two-layer Mg/Al materials. Arch Civ Mech Eng. 2018;18:1401–9. https ://doi.org/10.1016/j.acme.2018.05.003.
  • [8] Paul H, Skuza W, Chulist R, Miszczyk M, Gałka A, Prażmowski M, Pstruś J. The effect of interface morphology on the electro-mechanical properties of Ti/Cu clad composites produced by explosive welding, Metall. Mater Trans A Phys Metall Mater Sci. 2020;51:750–66. https ://doi.org/10.1007/s1166 1-019-05537-x.
  • [9] Carvalho GHSFL, Galvão I, Mendes R, Leal RM, Loureiro A. Weldability of aluminium-copper in explosive welding. Int J Adv Manuf Technol. 2019a;103:3211–21. https ://doi.org/10.1007/s0017 0-019-03841 -9.
  • [10] Banker JG. Explosion cladding: an enabling technology for zirconium in the chemical process industry. J ASTM Int. 2010;7:1–10. https ://doi.org/10.1520/JAI10 3050.
  • [11] Saranarayanan R, Lakshminarayanan AK, Venkatraman B. A combined full-field imaging and metallography approach to assess the local properties of gas tungsten arc welded copper–stainless steel joints. Arch Civ Mech Eng. 2019;19:251–67. https ://doi.org/10.1016/j.acme.2018.08.009.
  • [12] Wang H, Wang Y. High-velocity impact welding process: a review. Metals (Basel). 2019;9:144. https ://doi.org/10.3390/met90 20144.
  • [13] Liu L, Ren D, Liu F. A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials (Basel). 2014;7:3735–57. https ://doi.org/10.3390/ma705 3735.
  • [14] Findik F. Recent developments in explosive welding. Mater Des. 2011;32:1081–93. https ://doi.org/10.1016/j.matdes.2010.10.017.
  • [15] Bataev IA, Tanaka S, Zhou Q, Lazurenko DV, Junior AMJ, Bataev AA, Hokamoto K, Mori A, Chen P. Towards better understanding of explosive welding by combination of numerical simulation and experimental study. Mater Des. 2019;169:107649. https ://doi.org/10.1016/j.matde s.2019.10764 9.
  • [16] A578M-17 AA (2010) Standard specification for straight-beam ultrasonic examination of rolled steel plates, ASTM Int. West Conshohocken, PA. 01:1–5. https ://doi.org/10.1520/A0633.
  • [17] Xie MX, Zhang LJ, Zhang GF, Zhang JX, Bi ZY, Li PC. Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling. Mater Des. 2015;87:181–97. https ://doi.org/10.1016/j.matde s.2015.08.021.
  • [18] Carvalho GHSFL, Galvão I, Mendes R, Leal RM, Loureiro A. Microstructure and mechanical behaviour of aluminium-carbon steel and aluminium-stainless steel clads produced with an aluminium interlayer. Mater Charact. 2019b;155:109819. https ://doi.org/10.1016/j.match ar.2019.10981 9.
  • [19] Prażmowski M, Paul H, Zok F. The effect of heat treatment on the properties of zirconium–Carbon steel bimetal produced by explosion welding. Arch Metall Mater. 2014;59:1143–9. https ://doi.org/10.2478/amm-2014-0199.
  • [20] Ye C, Lu G, Ni L, Liu Q, Hou S, Tong H, Yao Y, Zhou J. Effects of heat treatment on microstructure and mechanical properties of explosive welded 10CrNi3MoV steel-304 L stainless steel. Mater Lett. 2020;262:127053. https ://doi.org/10.1016/j.matlet.2019.12705 3.
  • [21] Blazynski TZ. Explosive welding, forming and compaction. London, New York: Applied Science Publishers Ltd; 1983.
  • [22] B. Crossland, Explosive welding of metals and its application, Clarendon Press, 1982.
  • [23] Prasanthi TN, Sudha C, Ravikirana SS. Explosive cladding and post-weld heat treatment of mild steel and titanium. Mater Des. 2016;93:180–93. https ://doi.org/10.1016/j.matde s.2015.12.120.
  • [24] Paul H, Miszczyk MM, Chulist R, Prażmowski M, Morgiel J, Gałka A, Faryna M, Brisset F. Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets. Mater Des. 2018;153:177–89. https ://doi.org/10.1016/j.matde s.2018.05.014.
  • [25] Karolczuk A, Paul H, Szulc Z, Kluger K, Najwer M, Kwiatkowski G. Residual stresses in explosively welded plates made of titanium grade 12 and steel with interlayer. J Mater Eng Perform. 2018;27:4571–81. https ://doi.org/10.1007/s1166 5-018-3559-4.
  • [26] Fronczek DM, Saksl K, Chulist R, Michalik S, Wojewoda-Budka J, Sniezek L, Wachowski M, Torzewski J, Sulikova M, Sulova K, Lachova A, Fejercak M, Daisenberger D, Szulc Z, Kania Z. Residual stresses distribution, correlated with bending tests, within explosively welded Ti gr. 2/A1050 bimetals. Mater Charact. 2018;144:461–8. https ://doi.org/10.1016/j.match ar.2018.08.004.
  • [27] Karolczuk A, Kowalski M, Kluger K, Żok F. Identification of residual stress phenomena based on the hole drilling method in explosively welded steel-titanium composite. Arch Metall Mater. 2014;59:1129–33. https ://doi.org/10.2478/amm-2014-0195.
  • [28] Sniezek L, Szachogluchowicz I, Wachowski M, Torzewski J, Mierzynski J. High cycle fatigue properties of explosively welded laminate AA2519/AA1050/Ti6Al4V. Procedia Struct Integr. 2017;5:422–9. https ://doi.org/10.1016/j.prost r.2017.07.191.
  • [29] Rozumek D, Kwiatkowski G. The influence of heat treatment parameters on the cracks growth under cyclic bending in St-Ti clad obtained by explosive welding. Metals (Basel). 2019;9:1–11. https ://doi.org/10.3390/met90 30338.
  • [30] Wachowski M, Śnieżek L, Szachogłuchowicz I, Kosturek R, Płociński T. Microstructure and fatigue life of Cp-Ti/316L bime-tallic joints obtained by means of explosive welding. Bull Polish Acad Sci Tech Sci. 2018;66:925–33. https ://doi.org/10.24425 /bpas.2018.12594 0.
  • [31] Wachowski M, Gloc M, Ślęzak T, Płociński T, Kurzydłowski KJ. The effect of heat treatment on the microstructure and properties of explosively welded titanium-steel plates. J Mater Eng Perform. 2017;26:945–54. https ://doi.org/10.1007/s1166 5-017-2520-2.
  • [32] Kang G, Ohno N, Nebu A. Constitutive modeling of strain range dependent cyclic hardening. Int J Plast. 2003;19:1801–19. https://doi.org/10.1016/S0749 -6419(03)00016 -0.
  • [33] Pippan R, Flechsig K, Riemelmoser FO. Fatigue crack propagation behavior in the vicinity of an interface between materials with different yield stresses. Mater Sci Eng A. 2000;283:225–33. https://doi.org/10.1016/S0921 -5093(00)00703 -6.
  • [34] Szachogluchowicz I, Sniezek L, Hutsaylyuk V. Low cycle fatigue properties of AA2519–Ti6Al4V laminate bonded by explosion welding. Eng Fail Anal. 2016;69:77–87. https ://doi.org/10.1016/j.engfa ilana l.2016.01.001.
  • [35] Karolczuk A, Kowalski M, Bański R, Żok F. Fatigue phenomena in explosively welded steel–titanium clad components subjected to push–pull loading. Int J Fatigue. 2013;48:101–8. https ://doi.org/10.1016/j.ijfat igue.2012.10.007.
  • [36] Böhm M, Kowalski M. Fatigue life estimation of explosive cladded transition joints with the use of the spectral method for the case of a random sea state. Mar Struct. 2020;71:102739. https ://doi.org/10.1016/j.marst ruc.2020.10273 9.
  • [37] Becker N, Gauthier D, Vidal EE. Fatigue properties of steel to aluminum transition joints produced by explosion welding. Int J Fatigue. 2020;139:105736. https ://doi.org/10.1016/j.ijfatigue.2020.10573 6.
  • [38] Karolczuk A, Kluger K, Derda S, Prażmowski M, Paul H. Influence of impact velocity on the residual stress, tensile strength, and structural properties of an explosively welded composite plate. Materials (Basel). 2020;13:1–14. https ://doi.org/10.3390/ma13122686.
  • [39] Loureiro A, Mendes R, Ribeiro JB, Leal RM, Galvão I. Effect of explosive mixture on quality of explosive welds of copper to aluminium. Mater Des. 2016;95:256–67. https ://doi.org/10.1016/j.matde s.2016.01.116.
  • [40] Robin LG, Raghukandan K, Saravanan S. Process parameter optimization to achieve higher impact strength in SS316 wire-mesh and SiCp reinforced aluminum composite laminates produced by explosive cladding. Met Mater Int. 2020. https ://doi.org/10.1007/s1254 0-020-00641 -9.
  • [41] Guo X, Ma Y, Jin K, Wang H, Tao J, Fan M. Effect of stand-off distance on the microstructure and mechanical properties of Ni/Al/Ni laminates prepared by explosive bonding. J Mater Eng Perform. 2017;26:4235–44. https ://doi.org/10.1007/s11665-017-2890-5.
  • [42] Chu Q, Zhang M, Li J, Yan C. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater Sci Eng A. 2017;689:323–31. https ://doi.org/10.1016/j.msea.2017.02.075.
  • [43] Prazmowski M, Paul H. The effect of stand-off distance on the structure and properties of zirconium–Carbon steel bimetal produced by explosion welding. Arch Metall Mater. 2012;57:1201–10. https ://doi.org/10.2478/v1017 2-012-0134-0.
  • [44] Ning J, Jie Zhang L, Xia Xie M, Yang HX, Qing Yin X, Xun Zhang J. Microstructure and property inhomogeneity investigations of bonded Zr/Ti/steel trimetallic sheet fabricated by explosive welding. J Alloys Compd. 2017;698:835–51. https ://doi.org/10.1016/j.jallc om.2016.12.213.
  • [45] Song J, Kostka A, Veehmayer M, Raabe D. Hierarchical microstructure of explosive joints: example of titanium to steel cladding. Mater Sci Eng A. 2011;528:2641–7. https ://doi.org/10.1016/j.msea.2010.11.092.
  • [46] Boroński D, Kotyk M, Maćkowiak P, Śnieżek L. Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions. Mater Des. 2017;133:390–403. https ://doi.org/10.1016/j.matde s.2017.08.008.
  • [47] Yang Y, Wang BF, Hu B, Hu K, Li ZG. The collective behavior and spacing of adiabatic shear bands in the explosive cladding plate interface. Mater Sci Eng A. 2005;398:291–6. https ://doi.org/10.1016/j.msea.2005.03.099.
  • [48] Chen S, Li WQ, Zhang L, Fu HM, Li ZK, Zhu ZW, Li H, Zhang HW, Wang AM, Wang YD, Zhang HF. Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites. Part B Eng Compos. 2020. https ://doi.org/10.1016/j.compo sites b.2020.10821 9.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-256b88ab-b575-42b0-b96f-cab66b28c534
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.