PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Axi-symmetric motion of a porous approximate sphere in an approximate spherical container

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The creeping motion of a porous approximate sphere at the instant it passes the center of an approximate spherical container with Ochoa-Tapia and Whitaker’s stress jump boundary condition has been investigated analytically. The Brinkman’s model for the flow inside the porous approximate sphere and the Stokes equation for the flow in an approximate spherical container were used to study the motion. The stream function (and thus the velocity) and pressure (both for the flow inside the porous approximate sphere and inside an approximate spherical container) are calculated. The drag force experienced by the porous approximate spherical particle and wall correction factor are determined in closed forms. The special cases of porous sphere in a spherical container and oblate spheroid in an oblate spheroidal container are obtained from the present analysis. It is observed that drag not only changes with the permeability of the porous region, but as the stress jump coefficient increases, the rate of change in behavior of drag increases.
Rocznik
Strony
485--509
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Department of Mathematics National Institute of Technology Warangal-506 004, A.P., India
  • Department of Mathematics National Institute of Technology Warangal-506 004, A.P., India
Bibliografia
  • 1. C.W. Oseen, Hydrodynamik, Akademische Verlagsgesellschaft, Leipzig, 1927.
  • 2. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. 1965.
  • 3. S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, MA, USA 1991.
  • 4. R.B. Jones, Dynamics of a colloid in a spherical cavity, [in:] Theoretical Methods for Micro Scale Viscous Flows, eds. Francois Feuillebois and Antoine Sellier, Transworld Research Network, 2009.
  • 5. E. Cunningham, On the velocity of steady fall of spherical particles through fluid medium, Proc. Roy. Soc. London Ser., 83, 357–369, 1910.
  • 6. W.E. Williams, On the motion of a sphere in a viscous fluid, Philos. Mag., 29, 526–550, 1915.
  • 7. W.L. Haberman, R.M. Sayre, Wall effects for rigid and fluid spheres in slow motion with a moving liquid. David Taylor model, Basin Report No 1143, Washington, DC, 1958.
  • 8. H. Ramkissoon, K. Rahaman, Non-Newtonian fluid sphere in a spherical container, Acta Mech., 149, 239–245, 2001.
  • 9. H. Ramkissoon, K. Rahaman, Wall effects on a spherical particle, Int. J. Eng. Sci., 41, 283–290, 2003.
  • 10. C. Maul, S. Kim, Image systems for a Stokeslet inside a rigid spherical container, Phys. Fluids, 6, 2221–2223, 1994.
  • 11. C. Maul, S. Kim, Image of a point force in a spherical container and its connection to the Lorentz reflection formula, J. Eng. Math., 30, 119–130, 1996.
  • 12. J.R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech., 46, 199–208, 1971.
  • 13. B.U. Felderhof, A. Sellier, Mobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cell, J. Chem. Phys., 136, 054703, 2012.
  • 14. D.D. Joseph, L.N. Tao, The effect of permeability in the slow motion of a porous sphere in a viscous liquid, Z. Angew. Math. Mech., 44, 361–364, 1964.
  • 15. G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197–207, 1967.
  • 16. P.G. Saffman, On the boundary condition at the surface of a porous medium, Stud. Appl. Math., 50, 93–101, 1971.
  • 17. B.S. Padmavathi, T. Amarnath, D. Palaniappan, Stokes flow about a porous spherical particle, Arch. Mech., 46, 191–199, 1994.
  • 18. D.N. Sutherland, C.T. Tan, Sedimentation of a porous sphere, Chem. Engg. Sc., 25, 1948–1950, 1970.
  • 19. H.C. Brinkman, A calculation of viscous force exerted by a flowing fluid on dense swarm of particles, Appl. Sci. Res., A1, 27–34, 1957.
  • 20. P. Debye, A.M. Bueche, Intrinsic viscosity, diffusion and sedimentation rate of polymers in solution, J. Chem. Phys., 16, 6, 573–579, 1948.
  • 21. G. Ooms, P.E. Mijulieff, H.L. Becker, Frictional force exerted by a flowing fluid in a permeable particle with particular reference to polymer coils, J. Chem. Phys., 53, 4123–4130, 1970.
  • 22. K. Matsumoto, A. Suganuma, Settling velocity of a permeable model floc, Chem. Eng. Sci., 32, 445–447, 1977.
  • 23. C.K.W. Tam, The drag on a cloud of spherical particles in a low Reynolds number flow, J. Fluid Mech., 38, 537–546, 1969.
  • 24. T.S. Lundgren, Slow flow through stationary random beds and suspensions of spheres, J. Fluid Mech., 51, 273–299, 1972.
  • 25. Y. Qin, P.N. Kaloni, A Cartesian tensor solution of the Brinkman equation, J. Eng. Math., 22, 177–188, 1988.
  • 26. T. Zlatanovski, Axisymmetric creeping flow past a porous prolate spheroidal particie using the Brinkman model, Q. J. Mech. Appl. Math., 52, 1, 111–126, 1999.
  • 27. H.J. Keh, J. Chou, Creeping motion of a composite sphere in a concentric spherical cavity, Chem. Eng. Sci., 59, 407–415, 2004.
  • 28. H.J. Keh, Y.S. Lu, Creeping motions of a porous spherical shell in a concentric spherical cavity, J. Fluids and Structures, 20, 735–747, 2005.
  • 29. D. Srinivasacharya, Motion of a porous sphere in a spherical container, C. R. Mecanique, 333, 612–616, 2005.
  • 30. S. Deo, B.R. Gupta, Stokes flow past a swarm of porous approximately spheroidal particles with Kuwabara boundary condition, Acta Mech., 203, 241–254, 2009.
  • 31. E.I. Saad, Translation and rotation of a porous spheroid in a spheroidal container, Can. J. Phys., 88, 689–700, 2010.
  • 32. D.A. Nield, The limitations of the Brinkman-Forchheimer equation in modelling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Flow, 12, 269–272, 1991.
  • 33. D. Tomer, S. Uri, An apparent interface location as a tool to solve the porous interface flow problem, Transp. Porous Med., 78, 509–524, 2009.
  • 34. J.A. Ochoa-Tapia, S. Whitaker, Momentum transfer at the boundary between a porous medium and a homogeneous fluid – I, theoretical development, Int. J. Heat and Mass-Transfer., 38, 2635–2646, 1995.
  • 35. J.A. Ochoa-Tapia, S. Whitaker, Momentum transfer at the boundary between a porous medium and a homogeneous fluid – II, comparison with experiment, Int. J. Heat Mass Transfer, 38, 2647–2655, 1995.
  • 36. A.V. Kuznetsov, Analytical investigation of the fluid flow in the interface region between a porous media and a clear fluid in channels partially filled with porous medium, Appl. Sci. Res., 56, 53–67, 1996.
  • 37. A.V. Kuznetsov, Analytical investigation of Couette flow in a composite channel partially filled with a porous media and partially with a clear fluid, Int. J. Heat Mass Transfer, 41, 2556–2560, 1998.
  • 38. F.J. Valdès-Parada, J.A. Ramírez, B. Goyeau, J.A. Ochoa-Tapia, Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation, Transp. Porous Med., 78, 439–457, 2009.
  • 39. G.P. Raja Sekhar, A. Bhattacharyya, Stokes flow inside a porous spherical shell: Stress jump boundary condition, Z. Angew. Math. Phys., 56, 475–496, 2005.
  • 40. D. Srinivasacharya, Flow past a porous approximate spherical shell. Z. Angew. Math. Phys., 58, 646–658, 2007.
  • 41. G. Neale, N. Epstein, W. Nader, Creeping flow relative to permeable spheres, Chem. Engng. Sci., 28, 1865–1874, 1973.
  • 42. Q. Yu, P.N. Kaloni, A Cartesian tensor solution of the Brinkman equation, J. Eng. Math., 22, 177–188, 1988.
  • 43. T.K.V. Iyengar, D. Srinivasacharya, Stokes flow of an incompressible micro-polar fluid past an approximate sphere, Int. J. Engng. Sci., 31, 153–161, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2567fc89-be1a-45b0-b43f-013a72280b03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.