PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Catalytic Gasification of Fine Coal Waste Using Natural Zeolite to Produce Syngas as Fuel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The valorisation fine coal waste is still very limited in creating energy, especially syngas. This study aims to convert fine coal waste into synthetic gas via gasification using catalyst. Fine coal gasification takes place at 350–750 °C in an updraft gasifier using catalyst of 12.5–25 wt% natural zeolite. The research results show that the addition of zeolite has synergy with increasing temperature. The syngas produced at 750 °C and 12.5 wt% zeolite consisted of 32 vol% H2, 30.1 vol% CO, 27.7 vol% CH4 and 5.1 vol% CO2. The carbon conversion efficiency and high heating value (HHV) of synthetic gas are 88.34% and 18.97 MJ/Nm3. Fine coal has the potential to be reused as an energy source in the future.
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, Faculty of Engineering, Universitas PGRI Palembang, Jl. Jendral A. Yani Lr. Gotong Royong 9/10 Ulu, Palembang, South Sumatra, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas PGRI Palembang, Jl. Jendral A. Yani Lr. Gotong Royong 9/10 Ulu, Palembang, South Sumatra, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas PGRI Palembang, Jl. Jendral A. Yani Lr. Gotong Royong 9/10 Ulu, Palembang, South Sumatra, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas PGRI Palembang, Jl. Jendral A. Yani Lr. Gotong Royong 9/10 Ulu, Palembang, South Sumatra, Indonesia
autor
  • Chemical Engineering Department, Faculty of Engineering, Universitas PGRI Palembang, Jl. Jendral A. Yani Lr. Gotong Royong 9/10 Ulu, Palembang, South Sumatra, Indonesia
Bibliografia
  • 1. Aprianti N., Faizal M., Said M., Nasir, S. 2020. Valorization of palm empty fruit bunch waste for syngas production through gasification. Journal of Ecological Engineering, 21(7), 17–26. https://doi.org/10.12911/22998993/125461
  • 2. Aprianti N., Faizal M., Said M., Nasir S. 2022a. H2-rich syngas production by sorption enhanced steam gasification of palm empty fruit bunch. Comptes Rendus - Chimie, 25, 1–13. https://doi.org/10.5802/crchim.192
  • 3. Aprianti N., Faizal M., Said M., Nasir S. 2022b. Sorption-enhanced steam gasification of fine coal waste for fuel producing. Journal of King Saud University - Engineering Sciences, 40. https://doi.org/10.1016/j.jksues.2022.08.003
  • 4. Aprianti N., Faizal M., Said M., Nasir S., Fudholi, A. 2023.Gasification kinetic and thermodynamic parameters of fine coal using thermogravimetric analysis. Energy, 268(April 2023), 126666. https://doi.org/10.1016/j.energy.2023.126666
  • 5. Awan F.U.R., Arif M., Iglauer S., Keshavarz A. 2022. Coal fines migration: A holistic review of in- fluencing factors. Advances in Colloid and Interface Science, 301(December 2021), 102595. https://doi.org/10.1016/j.cis.2021.102595
  • 6. Aydin E.S., Yucel O., Sadikoglu H. 2019. Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier. International Journal of Hydrogen Energy, 44(32), 17389–17396. https://doi.org/10.1016/j.ijhydene.2019.02.175
  • 7. Baskoro F.R., Takahashi K., Morikawa K., Nagasawa K. 2021. System dynamics approach in determining coal utilization scenario in Indonesia. Resources Policy, 73(July), 102209. https://doi.org/10.1016/j.resourpol.2021.102209
  • 8. Burris L.E., Juenger M.C.G. 2020. Effect of calcination on the reactivity of natural clinoptilolite zeolites used as supplementary cementitious materials. Construction and Building Materials, 258, 119988. https://doi.org/10.1016/j.conbuildmat.2020.119988
  • 9. Chin B.L.F., Gorin A., Chua H.B., Twaiq F. 2016. Experimental investigation on tar produced from palm shells derived syngas using zeolite HZSM-5 catalyst. Journal of the Energy Institute, 89(4), 713–724. https://doi.org/10.1016/j.joei.2015.04.005
  • 10. Delikonstantis E., Sturm G., Stankiewicz A.I., Bosmans A., Scapinello M., Dreiser C., Lade O., Brand S., Stefanidis G.D. 2019. Biomass gasification in microwave plasma: An experimental feasibility study with a side stream from a fermentation reactor. Chemical Engineering and Processing - Process Intensification, 141(May), 107538. https://doi.org/10.1016/j.cep.2019.107538
  • 11. Faizal M., Said M., Nurisman E., Aprianti N. 2021. Purification of Synthetic Gas from Fine Coal Waste Gasification as a Clean Fuel. Journal of Ecological Engineering, 22(5), 114–120. https://doi.org/10.12911/22998993/135862
  • 12. Hoque M.E., Rashid F., Aziz M. 2021. Gasification and power generation characteristics of rice husk, sawdust, and coconut shell using a fixed-bed downdraft gasifier. Sustainability (Switzerland), 13(4), 1–19. https://doi.org/10.3390/su13042027
  • 13. Jiang L., Xue D., Wei Z., Chen Z., Mirzayev M., Chen Y., Chen S. 2022. Coal decarbonization: A state-of-the-art review of enhanced hydrogen production in underground coal gasification. Energy Reviews, 1(1), 100004. https://doi.org/10.1016/j.enrev.2022.100004
  • 14. Jiang Y., Huang T., Dong L., Su T., Li B., Luo X., Xie X., Qin Z., Xu C., Ji H. 2018. Mn modified Ni/bentonite for CO2 methanation. Catalysts, 8(12). https://doi.org/10.3390/catal8120646
  • 15. Li N., Li Y., Zhou H., Liu Y., Song Y., Zhi K., He R., Yang K., Liu Q. 2017. Direct production of high hydrogen syngas by steam gasification of Shengli lignite/chars: Significant catalytic effect of calcium and its possible active intermediate complexes. Fuel, 203, 817–824. https://doi.org/10.1016/j.fuel.2017.05.010
  • 16. Lu X., Cao L., Wang H., Peng W., Xing J., Wang S., Cai S., Shen B., Yang Q., Nielsen C. P., McElroy M.B. 2019. Gasification of coal and biomass as a net carbon-negative power source for environment- friendly electricity generation in China. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8206–8213. https://doi.org/10.1073/pnas.1812239116
  • 17. Ma X., Zhao X., Gu J., Shi J. 2019. Co-gasification of coal and biomass blends using dolomite and olivine as catalysts. Renewable Energy, 132, 509–514. https://doi.org/10.1016/j.renene.2018.07.077
  • 18. Madadian E., Orsat V., Lefsrud M. 2017. Comparative study of temperature impact on air gasification of various types of biomass in a research-scale downdraft reactor. Energy and Fuels, 31(4), 4045–4053. https://doi.org/10.1021/acs.energyfuels.6b03489
  • 19. Mansur F.Z., Faizal C.K.M., Monir M.U., Samad N.A.F.A., Atnaw S.M., Sulaiman S.A. 2020. Cogasification between coal/sawdust and coal/wood pellet: A parametric study using response surface methodology. International Journal of Hydrogen Energy, 45(32), 15963–15976. https://doi.org/10.1016/j.ijhydene.2020.04.029
  • 20. Midilli A., Kucuk H., Topal M.E., Akbulut U., Dincer I. 2021. A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy, 46(50), 25385–25412. https://doi.org/10.1016/j.ijhydene.2021.05.088
  • 21. Monir M.U., Abd Aziz A., Kristanti R.A., Yousuf A. 2018. Co-gasification of empty fruit bunch in a downdraft reactor: A pilot scale approach. Bioresource Technology Reports, 1, 39–49. https://doi.org/10.1016/j.biteb.2018.02.001
  • 22. Qiu P., Du C., Liu L., Chen L. 2018. Hydrogen and syngas production from catalytic steam gasification of char derived from ion-exchangeable Na- and Ca-loaded coal. International Journal of Hydrogen Energy, 43(27), 12034–12048. https://doi.org/10.1016/j.ijhydene.2018.04.055
  • 23. Sarafraz M.M., Christo F.C. 2020. Thermodynamic assessment and techno-economic analysis of a liquid indium-based chemical looping system for biomass gasification. Energy Conversion and Management, 225(September), 113428. https://doi.org/10.1016/j.enconman.2020.113428
  • 24. Solarte-Toro J.C., Chacón-Pérez Y., Cardona-Alzate C.A. 2018. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electronic Journal of Biotechnology, 33, 52–62. https://doi.org/10.1016/j.ejbt.2018.03.005
  • 25. Su H., Liao W., Wang J., Hantoko D., Zhou Z., Feng H., Jiang J., Yan M. 2020. Assessment of supercritical water gasification of food waste under the background of waste sorting: Influences of plastic waste contents. International Journal of Hydrogen Energy, 45(41), 21138–21147. https://doi.org/10.1016/j.ijhydene.2020.05.256
  • 26. Su T., Tian H., Qin Z., Ji H. 2017. Preparation and characterization of Cu modified BiYO3 for carbon dioxide reduction to formic acid. Applied Catalysis B: Environmental, 202, 364–373. https://doi.org/10.1016/j.apcatb.2016.09.035
  • 27. Xie L.F., Duan P.G., Jiao J.L., Xu Y.P. 2019. Hydrothermal gasification of microalgae over nickel catalysts for production of hydrogen-rich fuel gas: Effect of zeolite supports. International Journal of Hydrogen Energy, 44(11), 5114–5124. https://doi.org/10.1016/j.ijhydene.2018.09.175
  • 28. Yang Z., Hu J., Li Y., Chen Y., Qian K., Yang H., Chen H. 2019. Catalytic steam gasification of Mengdong coal in the presence of iron ore for hydrogen-rich gas production. Journal of the Energy Institute, 92(2), 391–402. https://doi.org/10.1016/j.joei.2017.12.005
  • 29. Zhou X., Zhao J., Guo S., Li J., Yu Z., Song S.S., Li J., Fang Y. 2018. High quality syngas production from pressurized K2CO3 catalytic coal gasification with in-situ CO2 capture. International Journal of Hydrogen Energy, 43(36), 17091–17099. https://doi.org/10.1016/j.ijhydene.2018.07.062
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2567d357-5a80-4f76-b4b2-69d01daf9ebc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.