PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Properties of High-Mn Austenitic Steel Tested under Static and Dynamic Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the paper is to investigate X73MnSiAlNbTi25-1-3 high manganese austenitic steel containing 0.73% C to determine structural mechanisms decisive for increasing a reserve of cold deformation energy of such steel. The influence of a strain rate on the structure of the investigated steels and on the structural mechanisms decisive for their properties was analysed. Specialist research instrumentation was used for this purpose such as Scanning Transmission Microscopy (including EBSD examinations), conventional and high-resolution transmission electron microscopy together with diffraction examinations and metallographic examinations. It was found that the principal cause of an increased reserve of cold deformation energy of the investigated steels in dynamic conditions is the activation of mechanical twinning in the mutually intersecting systems in austenite grains and annealing twins, which are densifying when a cold deformation rate is growing, thereby confirming the basic mechanism of TWIP (TWinning Induced Plasticity).
Twórcy
  • Silesian University of Technology, Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, 18A Konarskiego St r., 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, 18A Konarskiego St r., 44-100 Gl iwice, Poland
  • Silesian University of Technology, Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, 18A Konarskiego St r., 44-100 Gliwice, Poland
Bibliografia
  • [1] O. Kwon, K. Lee, G. Kim, K. Chin, Mater Sci Forum. 638-642, 136-141 (2010).
  • [2] W. Bleck, P. Larour, A. Baumer, Mater Forum 29, 21-28 (2005).
  • [3] International Iron & Steel Institute Committee on Automotive Applications: Advanced High Strength Steel (AHSS ) application guidelines, 2005, 69-74, www.ulsab.com (2012).
  • [4] C. Scott, S. Allain, M. Faral, N. Guelton, Rev Metall. 103, (6), 293-302 (2006).
  • [5] G. Frommeyer, U. Brüx, P. Neumann, ISI J Int. 43, 438-446 (2003).
  • [6] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int J Plasticity 16, 1391-1409 (2000).
  • [7] U. Brüx, G. Frommeyer, O. Grässel, L.W. Meyer, A. Weise, Steel Res. 73, 294-298 (2002).
  • [8] L.A. Dobrzański, A. Grajcar, W. Borek, Mater Sci Forum. 638-642, 3224-3229 (2010).
  • [9] L.A. Dobrzański, W. Borek, Mater Sci Forum. 654-656, 266-269 (2010).
  • [10] L.A. Dobrzański, W. Borek, Mater Sci Forum. 706-709, 2053-2058 (2012).
  • [11] T. Tański, K. Labisz, B. Krupińska, M. Krupiński, M. Król, R. Maniara, W. Borek, J Therm Anal Calorim. (2015), DOI 10.1007/s10973-015-4871-y 123, (1), 63-74 (2016).
  • [12] A. Grajcar, R. Kuziak, Adv Mat Res. 314-316, 119-122 (2011).
  • [13] A. Grajcar, K. Radwanski, H. Krzton, Sol St Phen. 203-204, 34-37 (2013).
  • [14] The Future of Manufacturing in Europe 2015-2020, The Challenge for Sustainability, Materials, Final Report, Groupe CM International, 2003, http://ec.europa.eu/research/industrial_technologies/pdf/pro-futman-doc3a.pdf, (2013).
  • [15] F. Brandes, A. Lejour, G. Verweij, F. van der Zee, The Future of Manufacturing in Europe, Final Report, 2007, http://ec.europa.eu, (2013).
  • [16] A. Zieliński, G. Golański, M. Sroka, T. Tański, Mater High Temp. (2015), DOI: 10.1179/1878641315Y.0000000015 (in press).
  • [17] A. Zieliński, G. Golański, M. Sroka, J. Dobrzański, Mater Sci Tech- Lond. (2015), DOI: 10.1179/1743284715Y.0000000137 (in press).
  • [18] A. Zieliński, G. Golański, M. Sroka, Kovove Mater. 54, (1), 51-58 (2016).
  • [19] L. A. Dobrzański, W. Sitek, M. Krupiński, J. Dobrzański, J Mater Process Tech. 157, 102-106 (2004).
  • [20] M. Krupiński, L.A. Dobrzanski, J.H. Sokolowski, W. Kasprzak, G. Byczynski, Mater Sci Forum. 539-543, 339-344 (2007).
  • [21] T. Tański, P. Snopiński, W. Pakieła, W. Borek, K. Prusik, S. Rusz, Arch Civ Mech Eng. 16, (3), 325-334 (2016).
  • [22] A. Niechajowicz, A. Tobota, Arch Civ Mech Eng. 8, (2), 129-137 (2008).
  • [23] L. A. Dobrzański, D. Pakuła, J. Mikuła, K. Gołombek, Int. J. Surface Science and Engineering 1, (1), 111-124 (2007).
  • [24] L. Da-Zhao, W. Ying-Hui, L. Chun-yue, H. Li-Feng, L. Dong- Ieng, J. Xian-Zhe, J Iron Steel Res Int. 17, (6), 67-73 (2010).
  • [25] A. Zieliński, M. Miczka, B. Boryczko, M. Sroka, Arch. Civ. Mech. Eng. 2016, DOI:10.1016/j.acme.2016.04.010 (in press).
  • [26] A. Niechajowicz, A. Tobota, Arch Metall Mater. 54, (3), 647-657 (2009).
  • [27] L. A. Dobrzański, M. Czaja, W. Borek, K. Labisz, T. Tanski, Int J Mater Prod Tec. 51, (3), 264-280, (2015).
  • [28] W. Sitek, Trans Famena, 34, (3), 39-46 (2010).
  • [29] W. Sitek, J. Trzaska, L.A. Dobrzański, Mater Sci Forum. 575-578, (1-2), 892-897 (2008).
  • [30] L. A. Dobrzański, R. Maniara, J. Sokolowski W. Kasprzak, M. Krupiński, Z. Brytan, J Mater Process Tech. 192, 582-587 (2007).
  • [31] Z. Brytan, J. Niagaj, Chiang Mai J Sci. 40, (5), 923-937 (2013).
  • [32] L. A. Dobrzański, M. Bonek, M. Piec, E. Jonda, Mater Sci Forum. 532-533, 657-660 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25657148-5a4b-4da2-ab03-06042e127488
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.