PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of spintronic devices for application in random access memory

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie urządzeń spintronicznych do zastosowania w pamięci o dostępie swobodnym RAM
Języki publikacji
EN
Abstrakty
EN
The article analyzes the physical processes that occur in spin-valve structures during recording process which occurs in high-speed magnetic memory devices.Considered are devices using magnetization of the ferromagnetic layer through transmitting magnetic moment bypolarized spin (STT-MRAM).Basic equations are derived to model the information recording process in the model of symmetric binary channel.Because the error probability arises from the magnetization process, a model of the magnetization process is formed, which is derived from the Landau-Lifshitz-Gilbert equations under the assumption of a single-domain magnet. The choice of a single-domain model is due to the nanometer size of the flat magnetic layer. The developed method of modeling the recording process determines the dependence of such characteristics as the bit error probability and the rate of recording on two important technological characteristics of the recording process: the value of the current and its duration. The endresult and the aim of the simulation is to determine the optimal values of the current and its duration at which the speed of the recording process is the highest for a given level of error probability. The numerical values of the transmission rate and error probability were obtained for a wide range of current values (10–1500 μA) and recording time of one bit (1–70 ns),and generally correctly describe the process of information transmission. The calculated data were compared with the technical characteristics of existing industrial devices and devices which are the object of the scientific research.The resulting model can be used to simulate devices using different values of recording currents: STT-MRAM series chips using low current values (500-100 μA), devices in the stage of technological design and using medium current values (100–500 μA) and devices that are the object of experimental scientific research and use high currents (500–1000 μA).The model can also be applied to simulate devices with different data rates, which have different requirements for both transmission speed and bit error probability. In this way, the model can be applied to both high-speed memory devices in computer systems and signal sensors, which are connected to sensor networks or connected to the IoT.
PL
W tym artykule analizowane są procesy fizyczne zachodzące w strukturach zaworów spinowych podczas procesu rejestrowania informacji, który występuje w urządzeniach z szybką pamięcią magnetyczną. Obiektem badańsą urządzenia wykorzystujące magnetyzację warstwy ferromagnetycznej poprzez przenoszenie momentu magnetycznego za pomocą spolaryzowanegospinu(STT-MRAM).Wyprowadzono podstawowe równania potrzebne do modelowania procesu rejestrowania informacji w modelu symetrycznego kanału binarnego.W związku z tym, żeprawdopodobieństwobłędu wynika z procesu magnesowania,stworzonyjest model procesu magnesowania, który został wyprowadzonyz równań Landaua-Lifshitza-Hilberta przy założeniu magnesu jednodomenowego.Wybór modelu jednodomenowego wynika z nanometrycznej wielkości płaskiej warstwy magnetycznej. Opracowana metoda modelowania procesu rejestrowaniainformacjiokreśla zależność wskaźników, takich jakprawdopodobieństwo błędnegobitu i szybkość transmisji informacji, od dwóch ważnych właściwości procesu rejestrowania: natężenia prądu i czasu jego trwania. Końcowym rezultatem i zarazem celem symulacji jest określenie optymalnych wartości natężenia prądu i czasutrwania rejestracji informacji, przy których prędkość procesu zapisu będzie najwyższa dla danego stopnia prawdopodobieństwa błędu. Uzyskano wartości liczbowe dla szybkości transmisji i prawdopodobieństwa błędu dla szerokiego zakresu natężenia prądu (10–1500 μA) i czasu rejestracji jednego bitu (1–70 ns), które ogólnie poprawnie opisują proces transmisji informacji. Wyniki obliczeń zostały porównane ze specyfikacją techniczną istniejących urządzeń przemysłowych i urządzeń będących obiektami badań naukowych.Powstały model można wykorzystać do symulacji urządzeń wykorzystujących różne wartości natężenia prądu: układy szeregowe STT-MRAM wykorzystujące niskie natężenie prądu (500–100 μA), urządzenia na etapie projektowania technologicznego, które wykorzystują średnie natężenie prądu (100–500 μA) oraz urządzenia będące obiektami eksperymentalnych badań naukowych, które wykorzystują wysokie natężenie prądu (500–1000 μA). Model można również zastosować w symulacjachurządzeń o różnych szybkościach transmisji danych, które mają różne wymagania dotyczące zarówno szybkości transmisji, jak i prawdopodobieństwa błędu w jednym bicie informacji.W ten sposób model ten można wykorzystać zarówno w urządzeniach z szybką pamięcią w systemach komputerowych, jak i w czujnikach sygnałów, które są podłączone do sieci czujników lub podłączone do Internetu rzeczy.
Rocznik
Strony
62--65
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Yuriy Fedkovych Chernivtsi National University, Physical, Technical and Computer Sciences Institute, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine
autor
  • Danylo Halytsky Lviv National Medical University, Faculty of Pharmacy, Department of Biophysics, Lviv, Ukraine
  • Yuriy Fedkovych Chernivtsi National University, Physical, Technical and Computer Sciences Institute, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine
autor
  • Yuriy Fedkovych Chernivtsi National University, Physical, Technical and Computer Sciences Institute, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine
Bibliografia
  • [1] Alioto M.: STT-MRAM memories for IoT applications. Challenges and opportunities at circuit level and above International Symposium on VLSI Technology, Systems and Application VLSI-TS, Hsinchu, 2017, [http://doi.org/10.1109/VLSI-TSA.2017.7942448].
  • [2] Apalkov D., Dieny B., Slaughter J.: Magnetoresistive Random Access memory. Proc. of the IEEE 109/2017, 1796–1830, [http://doi.org/10.1109/JPROC.2016.2590142].
  • [3] Bhatti S. et al.: Spintronic based random access memory: a review. Materials Today 6(9)/2017, 530–548, [http://doi.org/10.1016/j.mattod.2017.07.007].
  • [4] Cai K., Immink K.A.S.: Cascaded channel modeling, analysis, andhybrid decoding for spin-torque transfer magnetic random access memory. IEEE Transactions on Magnetics 53(11)/2017, 1–11, [http://doi.org/10.1109/TMAG.2017.2711245].
  • [5] Cai H.: High performance MRAM with spin-transfer-torque and voltage-controlled magnetic anisotropy effects. Applied Sciences 7(9)/2017, 929–943, [http://doi.org/10.3390/app7090929].
  • [6] Chung S. et al.: 4Gbit Density STT-MRAM using Perpendicular MTJ Realized with Compact Cell Structure IEEE International Electron Devices Meeting IEDM, San Francisco 2016, [http://doi.org/10.1109/IEDM.2016.7838490].
  • [7] Greenan K., Miller E.: Reliability mechanisms for file systems using non-volatile memory as a metadata store. International conference on Embedded software EMSOFT, Seoul 2006, [http://doi.org/10.1145/1176887.1176913].
  • [8] Lai H. et al.: STT-MRAM application on IoT data privacy protection system. IEEE International Conference on Consumer Electronics ICCE-TW, Taichung 2018, [http://doi.org/10.1109/ICCE-China.2018.8448476].
  • [9] Lee K.: Bit error rate engineering for spin-transfer-torque MRAM. International Integrated Reliability Workshop. International IEEE Conference, South Lake Tahoe 2014, [http://doi.org/10.1109/IIRW.2014.7049540].
  • [10] Lee Y. et al.: Embedded STT-MRAM in28-nm FDSOI Logic Process for Industrial MCU/IoT Application. IEEE Symposium on VLSI Technology, Honolulu 2018, [http://doi.org/10.1109/VLSIT.2018.8510623].
  • [11] Sun J.Z., Xu, Y.: Handbook of Spintronics. Springer, Chicago 2016.
  • [12] Sverdlov V., Makarov A., Selberherr S.: Switching current reduction in advanced spin-orbit torque MRAM. Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon EUROSOL-ULIS, 2018, [http://doi.org/10.1109/ULIS.2018.8354759].
  • [13] Vatajelu E. et al.: STT MRAM-Based PUF’s. Design, Automation &Testin Europe Conference & Exhibition DATE, Grenoble 2015, [http://doi.org/10.7873/DATE.2015.0505].
  • [14] Wang P. et al.: Development of STT-MRAM for embedded memory applications. IEEE International Magnetic Conference INTERMAG, Dublin 2017, [http://doi.org/10.1109/INTMAG.2017.8007930].
  • [15] Yamauchi T.: Prospect of embedded non-volatile memory in the smart society. VLSI Technology, System and Application: International Symposium, Hsinchu 2015, [http://doi.org/10.1109/VLSI-TSA.2015.7117541].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25631395-2db5-4274-ab40-0a88ae1f75e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.