Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This project studies the influence of different grain sizes of Ni-based Fe-33Ni-19Cr alloy obtained from heat treatment procedure on high temperature isothermal oxidation. Heat treatment procedure was carried out at two different temperatures, namely 1000℃ and 1200℃ for 3 hours of soaking time, followed by quenching in the water. These samples are denoted as T1000 and T1200. The heat-treated Ni-based Fe-33Ni-19Cr alloy was subjected to an isothermal oxidation test at 950℃ for 150 hours exposure. Oxidized heat-treated alloys were tested in terms of oxidation kinetics, phase analysis and surface morphology of oxidized samples. Oxidation kinetics were determine based on weight change per surface area as a function of exposure time. Phase analysis was determined using the x-ray diffraction (XRD) technique and surface morphology of oxidized samples was characterized using a scanning electron microscope (SEM). As a result, the heat treatment procedure shows varying grain sizes. The higher the heat treatment temperature, shows an increase in grain size with a decrease in hardness value. The oxidation kinetics for both heat-treated samples showed an increment pattern of weight change and followed a parabolic rate law. The oxidized T1000 sample recorded the lowest parabolic rate constant of 3.12×10-8mg2cm-4s-1, indicating a low oxidation rate, thus having good oxidation resistance. Phase analysis from the XRD technique recorded several oxide phases consisting of Cr2O3, MnCr2O4, and (Ti0.97Cr0.03)O2 oxide phases. In addition, a uniform oxide layer is formed on the oxidized T1000 sample, indicating good oxide scale adhesion, thereby improving the protective oxide behavior.
Wydawca
Czasopismo
Rocznik
Tom
Strony
747--752
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab.
Twórcy
autor
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Surface Technology Special Interest Group, Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Surface Technology Special Interest Group, Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
autor
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
- Universiti Malaysia Perlis (UniMAP), Surface Technology Special Interest Group, Faculty of Chemical Engineering & Technology, 02600 Arau, Perlis, Malaysia
autor
- Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-201 Częstochowa, Poland
autor
- Gheorghe Asachi Technical University of Iasi, Faculty of Material Science and Engineering, 41 D. Mangeron St., 700050 Iasi, Romania
Bibliografia
- [1] L. Tan, Corrosion Behavior of Ni-Base Alloys for Advanced High Temperature Water-Cooled Nuclear Plants. Corrosion Science 50 (11), 3056-3062 (2008). DOI: https://doi.org/10.1016/j.corsci.2008.08.024
- [2] Z. Zulnuraini, N. Parimin, Isothermal oxidation behavior of Fe-33Ni-18Cr alloy in different heat treatment temperature. Materials Science Forum 1010, 46-51 (2020). DOI: https://doi.org/10.4028/www.scientific.net/MSF.1010.46
- [3] D. Saber, I.S. Emam, R. Abdel-Karim, High temperature cyclic oxidation of Ni based superalloys at different temperatures in air. Journal of Alloys and Compounds 719, 133-141 (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.05.130
- [4] M.R. Hawryluk, M. Lachowicz, M. Janik, Z. Gronostajski, M. Stachowicz, Effect of the Heating Temperature of a Nickel-Chromium Steel Charge Material on the Stability of the Forging Process and the Durability of the Die. Arch. Metall. Mater. 68 (2), 711-722 (2023). DOI: https://doi.org/10.24425/amm.2023.142453
- [5] M. Yunus Khan, P. Sudhakar, B.S. Pabla, Investigation of Surface Characteristics of Inconel-625 by EDM with Used Cooking Oil-Based Biodiesel as Dielectric Fluid. Arch. Metall. Mater. 68 (4), 1225-1232 (2023). DOI: https://doi.org/10.24425/amm.2023.146186
- [6] D. Ahmet, C.C. Emre, Microstructural Evolution and Oxidation Behavior of Fe-4Cr-6Ti Ferritic Alloy with Fe2Ti Laves Phase Precipitates. Arch. Metall. Mater. 67 (3), 827-836 (2022). DOI: https://doi.org/10.24425/amm.2022.139672
- [7] K. Krystek, K. Krzanowska, M. Wierzbinska, M. Motyka, The Effect of Selected Process Conditions on Microstructure Evolution of the Vacuum Brazed Joints of Hastelloy X Nickel Superalloy Sheets. Arch. Metall. Mater. 67 (4), 1551-1561 (2022). DOI: https://doi.org/10.24425/amm.2022.142375
- [8] H. Long, S. Mao, Y. Liu, Z. Zhang, X. Han, Microstructural and compositional design of Ni-based single crystalline superalloys - A review. Journal of Alloys and Compounds 743, 203-220 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.01.224
- [9] T.D. Nguyen, K. Zhang, D.J. Young, Effect of Mn on oxide formation by Fe-Cr and Fe-Cr-Ni alloys in dry and wet CO2 gases at 650℃. Corrosion Science 112, 110-127 (2016). DOI: https://doi.org/10.1016/j.corsci.2016.07.014
- [10] R.C. Reed, C.M.F. Rae, Physical Metallurgy of the Nickel-Based Superalloys. Physical Metallurgy (Fifth Edition), 2215-2290 (2014). DOI: https://doi.org/10.1016/B978-0-444-53770-6.00022-8
- [11] G. Dercz, I. Matula, K. Prusik, J. Zajac, M. Szklarska, A. Kazek-Kesik, W. Simka, Effect of Nb and Zr alloying additives on structure and properties of Ti-Ta-Nb-Zr alloys for medical applications. Arch. Metall. Mater. 68 (3), 1137-1142 (2023). DOI: https://doi.org/10.24425/amm.2023.145485
- [12] C. Yong-Hoon, H. Gi-Su, P. So-Yeon, Effect of Nb and Mo Addition on the Microstructure and Wear Behavior of Fe-Cr-B Based Metamorphic Alloy Coating Layer Manufactured by Plasma Spray Process. Arch. Metall. Mater. 67 (4), 1521-1524 (2022). DOI: https://doi.org/10.24425/amm.2022.141086
- [13] T. Goryczka, G. Dercz, Effect of Milling Time on Crystallization Sequence and Microstructure of NiTi Alloys Produced Via High-Energy Ball Milling. Arch. Metall. Mater. 68 (3), 1127-1135 (2023). DOI: https://doi.org/10.24425/amm.2023.145484
- [14] N. Parimin, E. Hamzah, Influence of Ti on Oxide Formation During Isothermal Oxidation of 800H Ni-Based Alloys. Key Engineering Materials 929, 29-34 (2022). DOI: https://doi.org/10.4028/p-g4e757
- [15] H. Chen, H. Wang, Q. Sun, C. Long, T. Wei, S.H. Kim, J. Chen, C. Kim, C. Jang, Oxidation behavior of Fe-20Cr-25Ni-Nb austenitic stainless steel in high temperature environment with small amount of water vapor. Corrosion Science 145, 90-99 (2018). DOI: https://doi.org/10.1016/j.corsci.2018.09.016
- [16] J. Jiang, G. Xiao, Y. Wang, Y. Liu, High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state. Journal of Alloys and Compounds 784, 394-404 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.01.093
- [17] X. Zhuang, Y. Tan, X. You, P. Li, L. Zhao, C. Cui, H. Zhang, H. Cui, High temperature oxidation behavior and mechanism of a new Ni-Co-based superalloy. Vacuum 189, 110219 (2021). DOI: https://doi.org/10.1016/j.vacuum.2021.110219
- [18] J.W.X. Wo, H.T. Pang, A.S. Wilson, M.C. Hardy, H.J. Stone, The Isothermal Oxidation of a New Polycrystalline Turbine Disk Ni-Based Superalloy at 800C and its Modification with Pre-oxidation. Metallurgical and Materials Transactions A 54A, 1946-1960 (2023). DOI: https://doi.org/10.1007/s11661-022-06896-8
- [19] N. Kumar, V.K. Choubey, Comparative Evaluation of Oxidation Resistance of Detonation Gun-Sprayed Al2O3-40%TiO2 Coating on Nickel-Based Superalloys at 800°C and 900°C. High Temperature Corrosion of Materials 99, 359-373 (2023). DOI: https://doi.org/10.1007/s11085-023-10157-3
- [20] Y.X. Xu, J.T. Lu, W.Y. Li, X.W. Yang, Oxidation behaviour of Nb-rich Ni-Cr-Fe alloys: Role and Effect of Carbides Precipitates. Corrosion Science 140, 252-259 (2018). DOI: https://doi.org/10.1016/j.corsci.2018.05.040
- [21] M. Taylor, R. Ding, P. Mignanelli, M. Hardy, Oxidation behaviour of a developmental nickel-based alloy and the role of minor elements. Corrosion Science 196, 110002 (2022). DOI: https://doi.org/10.1016/j.corsci.2021.110002
- [22] M.P. Taylor, D. Calderwood, T.D. Reynolds, N. Warnken, P.M. Mignanelli, M.C. Hardy, D.M. Collins, Temperature Range of Heating Rate Dependent Reactions Leading to Spinel Formation on a Ni-Based Superalloy. High Temperature Corrosion of Materials 100, 65-83 (2023). DOI: https://doi.org/10.1007/s11085-023-10165-3
- [23] C.N. Athreya, K. Deepak, D. Kim, B. de Boer, S. Mandal, V.S. Sarma, Role of grain boundary engineered microstructure on high temperature steam oxidation behaviour of Ni based superalloy alloy 617. Journal of Alloys and Compounds 778, 224-233 (2019). DOI: https://doi.org/10.1016/j.jallcom.2018.11.137
- [24] X. Wang, J.A. Szpunar, Effects of grain sizes on the oxidation behavior of Ni-based alloy 230 and N. Journal of Alloys and Compounds 752, 40-52 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.04.173
- [25] Z. Liu, Q. Ding, Q. Zhou, X. Yao, X. Wei, X. Zhao, Y. Wang, Z. Zhang, H. Bei, The effect of oxidation on microstructures of a Ni-based single crystal superalloy during heat-treatment and simulated service conditions. Journal of Materials Science 58, 6343-6360 (2023). DOI: https://doi.org/10.1007/s10853-023-08412-8
- [26] L. Li, L. Wang, Z. Liang, J. He, J. Qiu, F. Pyczak, M. Song, Effects of Ni and Cr on the high-temperature oxidation behavior and mechanisms of Co- and CoNi-base superalloys. Materials & Design 224, 111291 (2022). DOI: https://doi.org/10.1016/j.matdes.2022.111291
- [27] Y.X. Xu, J.T. Lu, X.W. Yang, J.B. Yan, W.Y. Li, Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000°C. Corrosion Science 127, 10-20 (2017). DOI: http://dx.doi.org/10.1016/j.corsci.2017.08.003
- [28] L. Tan, X. Ren, K. Sridharan, T.R. Allen, Effect of Shot-Peening on the Oxidation of Alloy 800H Exposed to Supercritical Water and Cyclic Oxidation. Corrosion Science 50 (7), 2040-2046 (2008). DOI: https://doi.org/10.1016/j.corsci.2008.04.008
- [29] N. Parimin, E. Hamzah, Effect of Solution treatment temperature on the microstructure of Fe-33Ni-19Cr Alloy. Materials Science Forum 1010, 21-27 (2020). DOI: https://doi.org/10.4028/www.scientific.net/MSF.1010.21
- [30] A. Col, V. Parry, C. Pascal, Oxidation of a Fe-18Cr-8Ni austenitic stainless steel at 850°C in O2: microstructure evolution during breakaway oxidation, Corrosion Science 114, 17-27 (2017). DOI: https://doi.org/10.1016/j.corsci.2016.10.029
Uwagi
This research was funded by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (FRGS) FRGS/1/2020/TK0/UNIMA)/02/43
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-255b7bf5-6f11-4bca-8190-d3486d6f0ece
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.