PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Ni(II) ions from aqueous solutions using manganese oxide nanoparticles from buffelgrass, Cenchrus ciliaris L., as green adsorbent. Kinetics and thermodynamic studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Manganese oxide nanoparticles (MnONPs) synthesized from buffelgrass, Cenchrus ciliaris (L.), an invasive weed posing threats to ecosystems, are used in this study to remove nickel(II) ions from aqueous solutions. As a biosorbent, the synthesized MnONPs were put to the test. MnONPs were studied for their surface morphology and functional properties. A variety of adsorbent dosages and contact times were tested in batch experiments to see how they affected adsorption rates. At pH 6.0 and room temperature, MnONPs had an 87.1% removal efficiency for Ni(II) ions. Pseudo-second order correlations had a higher R2 value (0.988). In the Langmuir plot, a maximum adsorption capacity of 4.78 mg/g was observed. However, the experimental data fitted well with both Langmuir and Freundlich isotherm models (R2 = 0.99). Spontaneous and exothermic was the nature of the adsorption process. To remove heavy metal ions contaminants from aqueous solutions, these results suggested that MnONPs synthesized from buffelgrass extract could be used.
Rocznik
Strony
135--149
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, India, Pincode-641013
  • Hindusthan College of Engineering and Technology, Coimbatore, Tamilnadu, India, Pincode-641032
  • Government College of Technology, Coimbatore, Tamilnadu, India, Pincode-641013
Bibliografia
  • [1] GENCHI G., CAROCCI A., LAURIA G., SINICROPI M.S, CATALANO A., Nickel: human health and environmental toxicology, Int. J. Environ. Res. Public Health, 2020, 17 (679), 1–21. DOI: 10.3390/ijerph17030679.
  • [2] PAVITHRAPRIYA S., MAHIMAIRAJA S., KARUPPUSAMY S., Pollution due to heavy metals in Coimbatore Wetlands, India, Res. J. Agr. Forest. Sci., 2015, 3 (6), 1–5.
  • [3] SAVOLAINEN H., Biochemical and clinical aspects of nickel toxicity, Rev. Environ. Health, 1996, 11 (4), 167–173. DOI: 10.1515/reveh.1996.11.4.167.
  • [4] GONG J.L., WANG X.Y., ZENG G.M., CHEN L., DENG J.H., ZHANG X.R., NIU Q.Y., Copper(II) removal by pectin iron oxide magnetic nanocomposite adsorbent, Chem. Eng., 2012, 185–186, 100–107. DOI: 10.1016/j.cej.2012.01.050.
  • [5] WANG H.Q., YANG G.F., LI Q.Y., ZHONG X.X., WANG F.P., LI Z.S., LI Y.H., Porous nanoMnO2: large scale synthesis via a facile quick-redox procedure and application in a supercapacitor, New J. Chem., 2011, 35, 469–475. DOI: 10.1039/C0NJ00712A.
  • [6] MARSHALL V.M., LEWIS M.M., OSTENDORF B., Buffelgrass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments. A review, J. Arid. Environ., 2012, 78, 1–12. DOI: 10.1016/j.jaridenv.2011.11.005.
  • [7] WANG S.G., GONG W.X., LIU X.W., YAO Y.W., GAO B.Y., YUE Q.Y., Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Sep. Purif. Technol., 2007, 58, 17–23. DOI: 10.1016/j.seppur.2007.07.006.
  • [8] ZOU W., HAN R., CHEN Z., SHI J., HONGMIN L., Characterization and properties of manganese oxide coated zeolite as adsorbent for removal of copper(II) and lead(II) ions from solution, J. Chem. Eng., 2006, 51, 534–541. DOI: 10.1021/je0504008.
  • [9] DEMIRKIRAN N., Copper adsorption by natural manganese dioxide, T. Nonfer. Metal. Soc., 2015, 25, 647–653. DOI: 10.1016/S1003-6326(15)63648-2.
  • [10] WANG S., GAO B., LI Y., MOSA A., ZIMMERMAN A.R., MA L.Q., HARRIS W.G., MIGLIACCIO K.W., Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead, Biores. Technol., 2015, 181, 13–17. DOI: 10.1016/j.biortech.2015.01.044.
  • [11] MALIYEKKAL S.M, SHARMA A.K., PHILIP L., Manganese-oxide-coated alumina. A promising sorbent for defluoridation of water, Water Res., 2006, 40, 3497. DOI: 10.1016/j.watres.2006.08.007.
  • [12] WU K., LIU T., XUE W., WANG X., Arsenic(III) oxidation/adsorption behaviors on a new bimetal adsorbent of Mn-oxide-doped Al oxide, Chem. Eng. J., 2012, 192, 343–349. DOI: 10.1021/es061160z.
  • [13] JAFTA C.J., NKOSI F., ROUX L.L., MATHE M.K., KEBEDE M., MAKGOPA K., SONG Y., TONG D., OYAMA M., MANYALA N., CHEN S., OZOEMENA K.I., Manganese oxide/graphene oxide composites for high-energy aqueous asymmetric electrochemical capacitors, Electrochim. Acta, 2013, 110, 228–233. DOI: 10.1016/j.electacta.2013.06.096.
  • [14] SUN K., WANG H., PENG H., WU Y., MA G., LEI Z., Manganese oxide nanorods supported on orange peelbased carbon nanosheets for high performance supercapacitors, Int. J. Elect. Sci., 2015, 10, 2000–2013.
  • [15] WANG L., HU C., SHAO L., Antimicrobial activity of nanoparticles: present situation and prospects for the future, Int. J. Nanomed., 2017, 12, 1227–1249. DOI: 10.2147/IJN.S121956.
  • [16] LAGERGREN S., About the theory of so called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24 (4), 1–39.
  • [17] HO Y.S., MCKAY G., Pseudo-second order model for sorption processes, Proc. Biochem., 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • [18] TRAN M.V., HA A.T., LE P.M.L., Nanoflake manganese oxide and nickel-manganese oxide synthesized by electrodeposition for electrochemical capacitor, J. Nanomater., 2015, Article ID 609273, 1–13. DOI: 10.1021/ac5039863.
  • [19] MALAR C.G., SEENUVASAN M., SATHISHKUMAR K., Adsorption of nickel ions by surface modified magnetite nanoparticles: kinetic study, J. Environ. Biol., 2019, 40, 748–752. DOI: 10.22438/jeb/40/4(SI)/JEB_10.
  • [20] LENOBLE V., LACLAUTRE C., SERPAUD B., DELUCHAT V., BOLLINGER J.C., As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin, Sci. Total. Environ., 2004, 326, 197–207. DOI: 10.1016/j.scitotenv.2003.12.012F.
  • [21] PANNEERSELVAM P., MORAD N., TAN A.K., Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution, J. Hazard. Mater., 2011, 186, 160–168.DOI: 10.1016/j.jhazmat.2010.10.102.
  • [22] HALDER G., KHAN A.A., DHAWANE S., Fluoride sorption onto a steam-activated biochar derived from cocos nucifera shell, Clean-Soil Air Water, 2016, 44 (2), 124–133. DOI:10.1002/clen.201400649.
  • [23] MAHAPATRA A., MISHRA B.G., HOTA G., Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution, J. Hazard. Mater., 2013, 258–259, 116–123. DOI: 10.1016/j.jhazmat.2013.04.045.
  • [24] SPARKS D.L., SUAREZ D.L. (Eds.), Rate of Soil Chemical Processes. SSSA Spec. Publ. 27, SSSA, Madison, WI, 1991.
  • [25] SHIKUKU V.O., ZANELLA R., KOWENJE C.O., DONATO F.F., BANDEIRA N.M.G., PRESTES O.D., Single and binary adsorption of sulfonamide antibiotics onto iron‑modifed clay: linear and nonlinear isotherms, kinetics, thermodynamics, and mechanistic studies, Appl. Water Sci., 2018, 8, 175. DOI: 10.1007/s13201-018-0825-4.
  • [26] YU Y., ZHUANG Y.Y., WANG Z.H., Adsorption of water-soluble dye onto functionalized resin, J. Coll. Interf. Sci., 2001, 242, 288–293. DOI: 10.1006/jcis.2001.7780.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-255b7a81-2562-4503-aa7c-2f31c9411a36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.