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ABSTRACT. In-orbit capture of a non-cooperative satellite will be a major challenge in the 

proposed servicing and active debris removal missions. The contact forces between the 

manipulator end-effector and the elements of the target object will occur in the grasping 

phase. In this paper, an active 6 Degrees of Freedom (DoF) force/torque control method for 

manipulator mounted on a free-floating servicing satellite is proposed. The main aim of the 

presented method is to balance the relation between end-effector position and force along 

each direction in the Cartesian space. The control law is based on the Dynamic Jacobian, 

which takes into account the influence of the manipulator motion on the state of the servicing 

satellite. The proposed approach is validated in numerical simulations with a simplified model 

of contact. Comparison with the classical Cartesian control shows that the active 6 DoF 

force/torque control method allows to obtain better positioning accuracy of the end-effector 

and lower control torques in manipulator joints in the presence of external forces. 

Keywords: active force/torque control, free-floating manipulator, Dynamic Jacobian, capture 

manoeuvre, in-orbit servicing 

1. INTRODUCTION 

Small, unmanned servicing satellites will be used to conduct in-orbit servicing and active 

debris removal missions (Luu and Hastings, 2021). Capture of the target object will be a 

major challenge of the proposed missions (Fehse, 2014). One of the considered ways to 

perform the capture operation is to use a gripper mounted on a robotic manipulator (Shan et 

al., 2016; Henshaw et al., 2022). The contact forces between the gripper and the elements of 

the target object will occur in the grasping phase (Oleś et al., 2017). These forces can result in 

a very high load acting on the manipulator or they can cause the target object to drift away 

from the servicing satellite. Thus, managing the contact dynamics between the satellite-

manipulator system and the target object is one of the fundamental capabilities required to 

enable servicing and active debris removal missions (Tasker and Henshaw, 2008). 

Various approaches are proposed to control the manipulator during its interaction with the 

environment (Villani and De Schutter, 2016). The compliant control can be divided into two 

main categories: (i) the active compliant control and (ii) the passive compliant control. In the 
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active compliant control, the compliance is achieved entirely due to control, while in the 

passive compliant control, it is achieved entirely due to mechanics (Calanca et al., 2016). In 

the passive compliant control the contact with the environment is controlled using an element 

of elasticity like a soft interface to the environment, whereas the classical position control law 

is considered. The active compliant control is divided into direct force control and indirect 

force control. Direct force control includes hybrid force and position control proposed by 

Raibert and Craig (1981). In such an approach, the task space is decomposed into different 

sets and directions, where either motion or force is controlled. The indirect force control 

allows to regulate the dynamic interaction between the manipulator and its environment. As a 

consequence, the relationship between forces and motion is regulated. Such a method is very 

useful for in-orbit capture operations as it allows to minimise loads acting on the manipulator 

during positioning of the gripper. 

Several studies are devoted to application of compliant control methods for the case of orbital 

capture operation. Liu et al. (2020a) proposed a position-based impedance control strategy 

based on mass-damping model that prevents the non-cooperative target object from moving 

away after contact with the end-effector. In the impedance control approach proposed by 

Nakanishi and Yoshida (2006), the end-effector of the manipulator is controlled like a spring-

mass-damper system fixed at a given point in the inertial frame in spite of the reactive motion 

of the servicing satellite. In another approach, based on a hybrid control scheme with damping 

and attitude tracking controllers, only the kinematic information of the space robot is 

employed as the control feedback, which can be considered as an advantage over the classical 

impedance control (Liu et al., 2020b). Wu et al. (2017) proposed a combination of admittance 

control method with resolved motion rate control. This approach allows to reduce the relative 

velocity at the contact spots and increase the compliance of the manipulator during contact. 

Pérez et al. (2018) proposed a method for tuning an impedance control scheme to ensure post-

impact velocity matching between the servicing satellite and the target object. Uyama et al. 

(2012) presented an open-loop impedance control law that allows to obtain the desired 

coefficient of restitution defined between the gripper and the grasping point on the free-

floating target object. The proposed approach was validated in experiments performed on a 

planar air-bearing microgravity simulator. García et al. (2019) presented validation of 

impedance control in hardware-in-the-loop experiments performed on the platform-art 

facility. Palma et al. (2022) proposed control with mechanical impedance realised along a 

single axis for facilitating contact between the end-effector and the target object. 

In this paper, we propose an active 6 Degrees of Freedom (DoF) force/torque closed-loop 

control method for manipulator mounted on a servicing satellite. In the case of no external 

forces and torques apart from those resulting from contact, such a system is referred to as 

free-floating (Wilde et al., 2018). The active 6 DoF force/torque algorithm is based on the 

admittance control with spring-mass-damper model. The contact force acting on the end-

effector is taken into account. The main aim of the proposed method is to balance the relation 

between the end-effector position and force along each direction in the Cartesian space. The 

control law is based on the Dynamic Jacobian, which takes into account the influence of the 

manipulator motion on the state of the servicing satellite. In the control algorithm, it is 

assumed that the linear and angular momenta are conserved and equal to zero. However, in 

reality, the momenta change due to the external forces acting on the end-effector. The changes 

are treated as a disturbance. The proposed approach is an extension of the method developed 

for post-capture operations in the e.Deorbit mission (Basmadji et al., 2018). The active 6 DoF 

force/torque control is validated in numerical simulations with a simplified model of contact. 

In the considered scenario, the end-effector is controlled to approach the selected grasping 
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point on the Launch Adapter Ring (LAR) of a non-cooperative target satellite. The proposed 

method is compared with the classical Cartesian control (Rybus et al., 2017). 

The paper is organised as follows. The dynamic model of the free-floating space manipulator 

is presented in Section 2. The proposed control method is described in Section 3. The results 

of numerical simulations are shown in Section 4. Section 5 contains discussion of the obtained 

results. The paper concludes with a short summary given in Section 6. 

2. DYNAMICS OF FREE-FLOATING MANIPULATOR 

The dynamic equations of motion of the satellite-manipulator system are based on the 

equations presented by Seweryn and Banaszkiewicz (2008) and Rybus et al. (2017). The 

schematic view of the system is shown in Figure 1. The scheme presents a manipulator (with 

𝑛 rotational joints) mounted on the free-floating base – a servicing satellite. The inertial frame 

of reference Π𝑖𝑛𝑒 is non-moving, non-rotating and fixed to an arbitrarily selected point in the 

Cartesian space. In the following notation, the frames of reference in which the vectors are 

expressed are given in the superscript. If the variables are expressed in the inertial frame, then 

the superscript is omitted for simplicity. 

 

Figure 1. Schematic view of the satellite-manipulator system 

The configuration of the system is described by 6+𝑛 generalised coordinates: 

 𝐱𝑝 = [𝐏𝑠
𝑇 𝐪𝑇]𝑇 , (1) 

where 𝐏𝑠 = [𝐩𝑠
𝑇 𝛗𝑠

𝑇]𝑇, 𝐩𝑠 denotes the position vector of the servicing satellite centre of 

mass (CoM), 𝛗𝑠 denotes the vector of the servicing satellite orientation described by three 

Euler angles in ZYX convention, whereas 𝐪 denotes the vector of manipulator joint angles. 

The vector of generalised velocities of the satellite-manipulator system is defined as follows: 

 𝐱𝑣 = [𝐕𝑠
𝑇 𝐪̇

𝑇
]

𝑇
, (2) 

where 𝐕𝑠 = [𝐯𝑠
𝑇 𝛚𝑠

𝑇]𝑇, 𝐯𝑠 denotes the linear velocity vector of the servicing satellite CoM, 

𝛚𝑠 = 𝐓𝑒𝑢𝑙𝚯̇𝑠 denotes the angular velocity vector of the servicing satellite (𝐓𝑒𝑢𝑙 is the 

transformation matrix that maps Euler angles derivatives into the angular body velocity), 

whereas 𝐪̇ denotes the vector of manipulator joint angular velocities. 

The dynamics of the satellite-manipulator system is described by the equation 

 [
𝐌𝑠 𝐌𝑠𝑚

𝐌𝑠𝑚
𝑇 𝐌𝑚

] 𝐱̇𝑣 + [
𝐂𝑠

𝐂𝑚
] 𝐱𝑣 = 𝐐, (3) 

where 𝐌𝑠 and 𝐌𝑚 are mass matrices of the servicing satellite and the manipulator, 

respectively, 𝐌𝑠𝑚 is the mass matrix that couples the dynamics of the servicing satellite and 

the manipulator, 𝐂𝑠 and 𝐂𝑚 are Coriolis matrices of the servicing satellite and the 
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manipulator, respectively (each matrix is defined by Rybus et al., 2022), whereas 𝐐 denotes 

the vector of generalised forces given by the following equation: 

 𝐐 = [𝐅𝑠
𝑇 𝐮𝑇]𝑇 , (4) 

where 𝐅𝑠 = [𝐟𝑠
𝑇 𝛕𝑠

𝑇]𝑇, 𝐟𝑠 denotes the vector of external forces acting on the servicing satellite 

CoM, 𝛕𝑠 denotes the vector of external torques acting on the servicing satellite and 𝐮 is the 

vector of control torques applied to the manipulator joints. 

The linear and angular velocity of the manipulator end-effector is described by the following 

relation:  

 𝐕𝐸𝐸 = 𝐉𝑠𝐕𝑠 + 𝐉𝑚𝐪̇, (5) 

where 𝐉𝑠 denotes the Jacobian of the servicing satellite and 𝐉𝑚 is the standard fixed-base 

Jacobian of the manipulator. 

In case of the manipulator operating in close proximity to the target object, the servicing 

satellite Attitude and Orbit Control System (AOCS) is considered to be turned off. In 

addition, the gravity gradient is neglected due to relatively small size of the manipulator 

(Cavenago, 2019). Therefore, the external forces and torques acting on the servicing satellite 

CoM are equal to zero: 𝐅𝑠 = 𝟎. The system is then nonholonomic and has conserved linear 

and angular momenta (Ratajczak and Tchoń, 2020). The nonholonomic constraint of the 

system is written in the form 

 𝐇2𝐕𝑠 + 𝐇3𝐪̇ = 𝟎, (6) 

where matrices 𝐇2 and 𝐇3 are defined by Rybus et al. (2022). 

Solving (6) for linear and angular velocity of the servicing satellite and substituting into (5) 

yields  

 𝐕𝐸𝐸 = 𝐉𝑑𝑦𝑛𝐪̇, (7) 

where 𝐉𝑑𝑦𝑛 is the Dynamic Jacobian of the manipulator described by Rybus et al. (2012) as 

follows: 

 𝐉𝑑𝑦𝑛 = 𝐉𝑚 − 𝐉𝑠𝐇2
−1𝐇3. (8) 

The Dynamic Jacobian of the manipulator takes the dynamics of the servicing satellite into 

account by assumption of zero momenta and angular momenta of the system and allows to 

map the manipulator joint velocities into the linear and angular velocities of the end-effector 

for the free-floating case. The Dynamic Jacobian presented in (8) is expressed in the Π𝑖𝑛𝑒 

frame. However, by multiplying the Jacobian with proper rotation matrix, it can be expressed 

in any arbitrarily chosen frame of reference, for example, the Dynamic Jacobian can be 

expressed in Π𝐸𝐸  frame leading to mapping into end-effector velocities expressed in the Π𝐸𝐸  

frame (such a matrix will be denoted as 𝐉𝑑𝑦𝑛
(𝐸𝐸)

). 

3. ACTIVE 6 DOF FORCE/TORQUE CONTROL 

The main aim of the active 6 DoF force/torque control is to balance the relation between end-

effector position and force along each direction in the Cartesian space (Almeida et al., 2000). 

In the proposed approach, manipulator’s interaction with its environment is taken into 

account. Hence, the manipulator motion and acting forces are taken into consideration 

simultaneously in one control task. The compliance of the external forces is entirely 

guaranteed by the control algorithm, and the influence of the mechanics does not need to be 

considered (Calanca et al., 2016). The ‘6 DoF’ term in the method name refers to three 
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reaction forces and three reaction torques which act on the manipulator gripper. The presented 

method is applicable for the grasping phase, in which the end-effector is approaching LAR of 

the non-cooperative target satellite. The active 6 DoF force/torque control is based on the 

method proposed by Basmadji et al. (2018) for positioning an already captured target satellite 

during clamping operation in the e.Deorbit mission. A scheme of the control algorithm 

presented in this section is shown in Figure 2.  

 

Figure 2. Scheme of the active 6 DoF force/torque control algorithm (solid lines – input/output 

signals, dotted lines – dependencies/values required for calculation) 

It is worth noticing that the considered algorithm does not allow to follow the desired force 

trajectory, but it is a position control scheme with some adjustments to reduce the external 

forces acting on the gripper. In this approach, the manipulator is treated as a mechanical 

system with certain mass, stiffness and damping defined by gain matrices (Wang and Li, 

2010). A system of such properties may be formulated as 

 𝐌𝑑 (𝐕̇𝐸𝐸
(𝐿𝐴𝑅)

− (𝐕̇𝐸𝐸
(𝐿𝐴𝑅)

)
𝑑𝑒𝑠

) + 𝐁𝑑 (𝐕𝐸𝐸
(𝐿𝐴𝑅)

− (𝐕𝐸𝐸
(𝐿𝐴𝑅)

)
𝑑𝑒𝑠

) + 

 +  𝐊𝑑 (𝐏𝐸𝐸
(𝐿𝐴𝑅)

− (𝐏𝐸𝐸
(𝐿𝐴𝑅)

)
𝑑𝑒𝑠

) =  𝐅𝑒𝑥𝑡
(𝐿𝐴𝑅)

, (9)  
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where 𝐕̇𝐸𝐸
(𝐿𝐴𝑅)

 is the vector containing the current linear and angular acceleration of the end-

effector, 𝐕𝐸𝐸
(𝐿𝐴𝑅)

 is the vector of the current linear and angular velocity of the end-effector, 

𝐏𝐸𝐸
(𝐿𝐴𝑅)

 is the vector of the current position and orientation of the end-effector, vectors with 

des in the subscript denote respective desired values, 𝐌𝑑 is the positive-definite matrix 

representing the desired inertia, 𝐁𝑑 is the positive-definite matrix representing the desired 

damping, 𝐊𝑑 is the positive-definite matrix representing the desired stiffness and 𝐅𝑒𝑥𝑡
(𝐿𝐴𝑅)

 

represents the external forces and torques acting on the end-effector. In the considered 

approach, all values are expressed with respect to the LAR reference frame, which is denoted 

with (𝐿𝐴𝑅) in the superscript. Orientations considered in (9) are described by Euler angles in 

ZYX convention with respect to the LAR frame, 𝛗𝐸𝐸
(𝐿𝐴𝑅)

. Hence, geometric angular velocity in 

the Cartesian space may be calculated as follows: 

 𝛚𝐸𝐸
(𝐸𝐸)

= 𝐓𝑒𝑢𝑙𝛗̇𝐸𝐸
(𝐿𝐴𝑅)

. (10) 

To calculate Cartesian space angular accelerations, equation (10) needs to be differentiated: 

 𝛚̇𝐸𝐸
(𝐸𝐸)

= 𝐓̇𝑒𝑢𝑙𝛗̇𝐸𝐸
(𝐿𝐴𝑅)

+ 𝐓𝑒𝑢𝑙𝛗̈𝐸𝐸
(𝐿𝐴𝑅)

. (11) 

However, values in (10) and (11) are expressed in the end-effector body reference frame, so 

they have to be transformed to the LAR reference frame: 

 𝛚𝐸𝐸
(𝐿𝐴𝑅)

=  𝐑𝐸𝐸
𝐿𝐴𝑅𝛚𝐸𝐸

(𝐸𝐸)
, (12) 

 𝛚̇𝐸𝐸
(𝐿𝐴𝑅)

=  𝐑̇𝐸𝐸
𝐿𝐴𝑅𝛚𝐸𝐸

(𝐸𝐸)
+  𝐑𝐸𝐸

𝐿𝐴𝑅𝛚̇𝐸𝐸
(𝐸𝐸)

, (13) 

where 𝐑𝐸𝐸
𝐿𝐴𝑅 is the rotation matrix that converts angular velocities from the end-effector body 

reference frame to the LAR reference frame. 

According to (9), the reference trajectory of the linear and angular accelerations may be 

defined as 

 (𝐕̇𝐸𝐸
(𝐿𝐴𝑅)

)
𝑟𝑒𝑓

=  (𝐕̇𝐸𝐸
(𝐿𝐴𝑅)

)
𝑑𝑒𝑠

+  𝐌𝑑
−1 (𝐅𝑒𝑥𝑡

(𝐿𝐴𝑅)
+  𝐁𝑑 ((𝐕𝐸𝐸

(𝐿𝐴𝑅)
)

𝑑𝑒𝑠
− 𝐕𝐸𝐸

(𝐿𝐴𝑅)
)) + 

 +𝐌𝑑
−1 𝐊𝑑 ((𝐏𝐸𝐸

(𝐿𝐴𝑅)
)

𝑑𝑒𝑠
− 𝐏𝐸𝐸

(𝐿𝐴𝑅)
).  (14) 

To formulate the control law, the reference linear and angular velocities of the end-effector 

expressed with respect to the body reference frame need to be calculated. Thus, equation (14) 

is integrated as follows: 

 (𝐕𝐸𝐸
(𝐿𝐴𝑅)

)
𝑟𝑒𝑓

=  ∫(𝐕̇𝐸𝐸
(𝐿𝐴𝑅)

)
𝑟𝑒𝑓

𝑑𝑡 +  ((𝐕𝐸𝐸
(𝐿𝐴𝑅)

)
𝑟𝑒𝑓

)
0

, (15) 

where subscript 0 denotes the initial condition. Furthermore, the reference velocities from 

(15) need to be transformed to the body reference frame: 

 (𝐕𝐸𝐸
(𝐸𝐸)

)
𝑟𝑒𝑓

= [
𝐑𝐿𝐴𝑅

𝐸𝐸 𝟎3×3

𝟎3×3 𝐑𝐿𝐴𝑅
𝐸𝐸 ] (𝐕𝐸𝐸

(𝐿𝐴𝑅)
)

𝑟𝑒𝑓
. (16) 

Finally, the control law defining the desired joint angular velocities can be formulated as 

follows: 

 𝐪̇𝑑𝑒𝑠 = (𝐉𝑑𝑦𝑛
(𝐸𝐸)

)
#

(𝐕𝐸𝐸
(𝐸𝐸)

)
𝑟𝑒𝑓

, (17) 
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where # denotes Moore–Penrose pseudoinverse of a matrix. Although the Dynamic Jacobian, 

defined with (8), assumes the conservation of the linear and angular momenta, the control law 

correctly compensates disturbances resulting from the external forces and torques acting on 

the end-effector. The forces and torques are included in the definition of the reference 

velocities (equations (14)–(16)).  

External forces and torques are nominally measured in the force/torque sensor reference 

frame. The sensor is located between the seventh link of the manipulator and the end-effector. 

Thus, the measurement needs to be properly translated to Π𝐸𝐸  frame to describe the impact of 

external forces on the end-effector: 

 𝐅 𝑒𝑥𝑡
(𝐸𝐸)

=  𝐅 𝑒𝑥𝑡
(𝐹𝑇𝑆)

+ [
𝟎3×1

𝐩𝐸𝐸
(𝐹𝑇𝑆)

⊗ 𝐟(𝐹𝑇𝑆)], (18) 

where 𝐩𝐸𝐸
(𝐹𝑇𝑆)

 is the location of the end-effector with respect to the force/torque sensor frame 

and ⊗ denotes the cross product of vectors. Subsequently, values from (18) need to be 

transformed to the LAR frame according to the following equation: 

 𝐅𝑒𝑥𝑡
(𝐿𝐴𝑅)

=  [
𝐑𝐸𝐸

𝐿𝐴𝑅 𝟎3×3

𝟎3×3 𝐑𝐸𝐸
𝐿𝐴𝑅] 𝐅 𝑒𝑥𝑡

(𝐸𝐸)
. (19) 

4. RESULTS OF NUMERICAL SIMULATIONS 

In the conducted simulations, a redundant manipulator is considered. Its Denavit–Hartenberg 

parameters are presented in Table 1. Table 2 presents 𝑖-th link mass and its CoM position 

defined with respect to Π𝑖 (expressed in Π𝑖). Inertia properties of every link expressed with 

respect to its CoM in the local frame axes are shown in Table 3. 

The manipulator is mounted on the servicing satellite. Position of the mounting point is 

defined in the satellite frame as 𝐩𝑀𝑃
(𝑠)

=  [0.2 m 0.2 m 0.2 m]𝑇. It is assumed that the 

chaser inertia matrix is equal to 𝐈𝒔 =  𝑑𝑖𝑎𝑔3×3[79 kg m2 79 kg m2 117 kg m2] and its 

mass is 500 kg. 

Table 1. Denavit–Hartenberg parameters of the manipulator 

Link i 𝒒𝒊 (𝐫𝐚𝐝) 𝝀𝒊 (𝐦) 𝑳𝒊 (𝐦) 𝜶𝒊 (𝐫𝐚𝐝) 

1 𝑞1 + 𝜋/2 0.4 0 𝜋/2 

2 𝑞2 + 𝜋/2 −0.35 0 𝜋/2 

3 𝑞3 −0.3 0.6 0 

4 𝑞4 −0.35 0.35 0 

5 𝑞5 −0.3 0 −𝜋/2 

6 𝑞6 + 𝜋/2 0.3 0 𝜋/2 

7 𝑞7 0.25 0 0 

EE 0 0.175 0 0 
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Table 2. Link CoM positions and masses 

Link 𝑿 (𝐦) 𝒀 (𝐦) 𝒁 (𝐦) Mass (𝐤𝐠) 

1 0 0.3 0 15 

2 0 −0.25 0 13 

3 0.3 0 −0.2 18 

4 0.25 0 −0.35 10 

5 0 0.2 0 8.5 

6 0 0.25 0 10.5 

7 0 0 0.1 5 

EE 0 0 0.1 7 

Table 3. Link inertia properties 

Link 𝑰𝒙𝒙 (kg m2) 𝑰𝒚𝒚 (kg m2) 𝑰𝒛𝒛 (kg m2) 𝑰𝒙𝒚 (kg m2) 𝑰𝒙𝒛 (kg m2) 𝑰𝒚𝒛 (kg m2) 

1 0.2 0.15 0.1 0 0 0 

2 0.2 0.12 0.12 0 0 0 

3 0.3 1 1 0 0.2 0 

4 0.08 0.45 0.4 0 0.1 0 

5 0.6 0.55 0.35 0 0 0 

6 0.75 0.4 0.7 0 0 0 

7 0.3 0.3 0.3 0 0 0 

EE 0.09 0.05 0.12 0 0 0 

To validate the control system, the following simulation scenario is assumed. The manoeuvre 

of grasping LAR is considered. The initial configuration of the manipulator is 𝐪𝑖𝑛𝑖𝑡 =
 [𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7]𝑇, where 𝑞1 = 2.196 rad, 𝑞2 = −2.386 rad, 𝑞3 =
−2.011 rad, 𝑞4 = 2.595 rad, 𝑞5 = 2.558 rad, 𝑞6 = 0.756 rad and 𝑞7 = 0.949 rad.  

At the beginning of the simulation, LAR is located 0.08 m above the end-effector in the Z 

axis direction. It is assumed that orientations of the end-effector frame and the LAR frame 

coincide. Moreover, a stationary target is taken into account, so its velocities are set to zero. 

The desired position of the end-effector is defined to be 0.015 m above the LAR reference 

frame in the Z axis direction (gripper jaws need to be positioned above the LAR plane, so that 

grasping is possible). Furthermore, the initial velocities of the satellite-manipulator system are 

also equal to zero. The simulation lasts 17 s. Within the first 10 s, the desired trajectory of the 

end-effector in the LAR frame is given. After that time, constant position and orientation are 

considered as input signals of control algorithm. Such a solution is applied to stop the end-

effector in the desired position and orientation as well as to reduce oscillations of the end-

effector position and orientation in the final stage of motion. 

The simplified contact model is taken into account to verify usefulness of the algorithms 

while external forces act on the manipulator. The contact model is based on the model 

presented by Uyama et al. (2012) and Pérez et al. (2018), but the damping part is omitted. It is 

assumed that external forces act on the end-effector only in the range of a sphere of radius 

equal to 𝑟 = 0.03 m. Force value is proportional to the distance between the end-effector and 

the centre of the sphere, which is located in the constant position in the LAR frame: 0.015 m 
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below LAR in the Z axis direction. External forces expressed in the force/torque sensor  

reference frame are calculated according to the equation: 

 𝐟(𝐹𝑇𝑆) =
𝑘(𝑟−||𝐩𝐸𝐸

(𝐹)
||)

𝑟3

𝐩𝐸𝐸
(𝐹)

||𝐩𝐸𝐸
(𝐹)

||
, (20) 

where 𝑘 = 0.1 N m2, 𝐩𝐸𝐸
(𝐹)

 is the end-effector position with respect to the reference frame 

located in the centre of the force sphere and ||∙|| denotes the Euclidean norm of a vector. No 

external torques are taken into account. Visualisation of the considered force sphere is 

presented in Figure 3. The centre of the force sphere is located in the point (0,0,0), which is 

also the origin of the frame (𝐹). Vectors on the graph correspond to the repulsive force acting 

on the manipulator and measured by the force/torque sensor at points located inside the 

sphere. 

 

Figure 3. Visualisation of the force sphere 

The presented active 6 DoF force/torque control algorithm was compared with the classical 

Cartesian control algorithm (Rybus et al., 2017) which allows to follow the desired trajectory 

but does not consider external forces acting on the end-effector. The control law for the 

Cartesian control algorithm is defined with the following equation: 

 𝐪̇𝑑𝑒𝑠 = (𝐉𝑑𝑦𝑛
(𝐸𝐸)

)
#

𝐊 ((𝐏𝑃𝑂𝑅
(𝐿𝐴𝑅)

)
𝑑𝑒𝑠

− 𝐏𝑃𝑂𝑅
(𝐿𝐴𝑅)

), (21) 

where 

  K = [
𝐑𝐿𝐴𝑅

𝐸𝐸 𝐊𝑙𝑖𝑛 𝟎3×3

𝟎3×3 𝐑𝐿𝐴𝑅
𝐸𝐸 𝐓𝑒𝑢𝑙𝐊𝑒𝑢𝑙

],  (22) 

𝐊𝑙𝑖𝑛 and 𝐊𝑒𝑢𝑙 are the Cartesian control gain matrices. To compare performance of the 

algorithms, the external forces generated by the contact model should have values of the same 

magnitude for both simulation cases. This goal may be achieved by the choice of high values 

of parameters for spring-mass-damper system modelled in the active 6 DoF force/torque 

control algorithm. Thus, the considered matrices are defined as 𝐊𝑑 = 𝑑𝑖𝑎𝑔6×6(600),  

𝐁𝑑 = 𝑑𝑖𝑎𝑔6×6(500) and 𝐌𝑑 = 𝑑𝑖𝑎𝑔6×6(800). For Cartesian control algorithm, the gain 

matrices are chosen as 𝐊𝑙𝑖𝑛 = 𝑑𝑖𝑎𝑔3×3(3) and 𝐊𝑒𝑢𝑙 = 𝑑𝑖𝑎𝑔3×3(3). For both cases, joint 

torques are calculated based on joint angular velocities generated with the algorithm and joint 

angular velocities measured in the manipulator joints. These torques are generated using the 

Proportional-Integral-Derivative (PID) controllers, whose parameters are presented in Table 

4. During the first second of the simulation, the parameters are scaled with a coefficient 
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dependent on time and equal to 𝑡2 to avoid too rapid reaction of the control system and 

generation of very high joint torques. 

Table 4. PID controllers gains 

Joint 𝒌𝒑 𝒌𝒊 𝒌𝒅 

1 140 10 0.01 

2 210 10 0.01 

3 140 10 0.01 

4 105 1 0.01 

5 105 1 0.01 

6 21 1 0.01 

7 21 1 0.01 

In the following figures, simulation results are presented. The results obtained for both control 

algorithms for the same simulation scenario are compared. Positions and orientations reached 

by the end-effector in the LAR frame are shown in Figure 4. Moreover, the desired trajectory 

is presented. Furthermore, Figure 5 shows the external forces generated using the adopted 

contact model. They had an influence on the momentum and angular momentum of the 

satellite-manipulator system; so, these values were also investigated. The momentum and 

angular momentum of the system are presented in Figure 6. Servicing satellite velocities are 

shown in Figure 7. Subsequently, measured joint torques for both control algorithms are 

shown in Figure 8. Analysis of the maximal absolute values of torques generated in each joint 

was conducted. These values are compared in Table 5. Finally, Figure 9 presents graphs of 

loads measured between the seventh link of the manipulator and the end-effector. 

 

Figure 4. End-effector positions and orientations with respect to the LAR frame (blue dashed line – 

active 6 DoF force/torque control, red dotted line – Cartesian control, black solid line – desired) 
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Figure 5. External forces from the contact model (blue dashed line – active 6 DoF force/torque 

control, red dotted line – Cartesian control) 

 

Figure 6. Resultant values of momentum and angular momentum of the satellite-manipulator system 

(blue dashed line – active 6 DoF force/torque control, red dotted line – Cartesian control) 

 

Figure 7. Resultant values of servicing satellite velocities (blue dashed line – active 6 DoF 

force/torque control, red dotted line – Cartesian control) 
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Figure 8. Measured joint torques (blue dashed line – active 6 DoF force/torque control, red dotted line 

– Cartesian control) 

 

Figure 9. Loads measured between the seventh link and the end-effector (blue dashed line – active 6 

DoF force/torque control, red dotted line – Cartesian control) 

Table 5. Maximal values of measured joint torques 

Joint Active 6 DoF force/torque control (N m) Cartesian control (N m) 

1 1.50 1.89 

2 2.45 4.21 

3 1.68 2.72 

4 0.86 0.72 

5 1.10 1.55 

6 0.17 0.35 

7 0.036 0.027 
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5. DISCUSSION 

The conducted simulations prove that the proposed active 6 DoF force/torque control allows 

to achieve better performance of the manipulator when external forces are applied to it 

compared with the Cartesian control. The usage of the admittance control algorithm allowed 

to reach the desired position and orientation more precisely, which can be seen in Figure 4. 

Although more oscillations around the defined trajectory may be observed, they gradually 

disappear. For the Cartesian control algorithm, constant and significant errors can be observed 

in some dimensions. 

Due to different properties of control algorithms, in both considered simulation cases, the 

manipulator performed distinct motion. Thus, different external forces were generated. In 

particular, for the active 6 DoF force/torque control, the end-effector came into the range of 

the force sphere much earlier. It had a significant impact on momentum and angular 

momentum of the satellite-manipulator system. Application of external forces resulted in 

changes of these values. It was a significant difference compared to the assumption defined in 

Section 2 that the momentum and angular momentum are equal to zero. However, the active 6 

DoF force/torque control algorithm allowed to compensate this disturbance quite well and 

reduced the maximum values of momentum and angular momentum. Uncompensated non-

zero values of these parameters led to some inaccuracy in positioning of the end-effector, 

which can be particularly observed for the Cartesian control. Furthermore, a different 

behaviour of the manipulator in both cases is strictly connected with the servicing satellite 

velocities, which were higher for the Cartesian control. This aspect is also important as target 

may leave the manipulator workspace due to the motion of the manipulator base. Hence, the 

manoeuvre may not proceed successfully. High velocities of the servicing satellite may also 

result in the inability of the control system to compensate fast changes of the system position. 

The outer feedback loop for the position and orientation of the end-effector may be 

interpreted as a PID controller in case of the active 6 DoF force/torque control and as a P 

controller in case of the Cartesian control. Thus, reaction of the first considered algorithm is 

better. 

The positioning of the end-effector in the LAR frame was better in case of the active 6 DoF 

force/torque control. In addition, the generated torques were lower. Comparison of the 

maximal absolute values in Table 5 shows that the usage of the Cartesian control resulted in 

higher joint torques in almost every joint. In particular, torque generated for joint 2 is almost 

72 % higher when the Cartesian control is applied than for the admittance control. Even if 

some values generated with the active 6 DoF force/torque control are higher, the observed 

differences are not significant. It is worth noticing that lower joint torques were obtained 

despite the fact that the external forces were slightly higher and the end-effector was longer 

located in the range of the defined force sphere. 

Finally, loads measured between the seventh link and the end-effector do not differ a lot for 

both algorithms. It may be also observed that values of forces generated in the contact model 

are similar. Such results were achieved due to the selection of high values of the coefficients 

of the gain matrices in the active 6 DoF force/torque control. However, decrease of the system 

stiffness, damping and inertia modelled for this control algorithm may result in higher 

external forces without loss of the quality of following the desired trajectory. In such an 

approach, the manipulator will be robust to higher external forces and simultaneously, it will 

compensate their influence better. On the other hand, higher joint torques may be generated. 

Selection of proper gains 𝐊𝑑, 𝐁𝑑 and 𝐌𝑑 is important to reach the desired balance between 

following the desired trajectory and reaction to the external forces. 



227 

 

The discussed simulations were run using the MATLAB Simulink environment. Hence, to 

compare the computation time of every algorithm, time spent in executing each function was 

measured. For both cases, the most time-consuming process was calculating the 

pseudoinverse of the Dynamic Jacobian matrix. It took almost 70% of the computational time 

for the Cartesian control algorithm, while for the active 6 DoF force/torque control algorithm, 

it took almost 60% of the computational time. Other operations were not so time-consuming. 

However, the active 6 DoF force/torque algorithm requires more calculations. To compute the 

desired velocity of the end-effector, numerical derivatives and integrators are used. Moreover, 

angular velocities and accelerations are defined with some non-linear equations, which are 

based on Euler angles and their derivatives. Meanwhile, the classical Cartesian algorithm 

needs only to calculate angular velocities based on Euler angles once. Thus, it is clear that the 

proposed admittance control algorithm may be more time-consuming due to higher number of 

considered numerical operations, in particular, the non-linear ones. However, although the 

active 6 DoF force/torque algorithm is more complex, still the most difficult part of the 

algorithm is calculating the pseudoinverse of the Dynamic Jacobian matrix, which is common 

for both considered control algorithms. Thus, the observed differences should not be 

significant for the implementation of the proposed admittance control algorithm on the 

satellite on-board computer. 

There are still a lot of possibilities to develop the presented approach. Further research on the 

active 6 DoF force/torque algorithm should consider more sophisticated contact model with a 

realistic architecture of the manipulator gripper. Moreover, experiments on real objects should 

be conducted, in particular, the ones in the conditions of microgravity. Such a study can be 

performed on a planar air-bearing microgravity simulator described by Basmadji et al. (2019) 

and Rybus et al. (2019). Alternatively, the algorithm may be verified with hardware-in-the 

loop tests using the KUBE platform (Granosik et al., 2016). It will be worthwhile especially 

due to the possibility of in-depth verification of the computational time measured in real 

application. 

6. CONCLUSIONS 

In this paper, the active 6 DoF force/torque control method for the manipulator mounted on 

the free-floating servicing satellite has been presented. The proposed approach is applicable 

for the grasping phase, in which the end-effector is approaching the selected grasping point on 

the non-cooperative target satellite. The main aim of the proposed method is to balance the 

relation between end-effector position and force along each direction in the Cartesian space. 

The 6 DoF force/torque control method was validated in numerical simulations with the 

simplified model of contact. The obtained results showed that the proposed solution allows to 

obtain better positioning of the end-effector and lower control torques in manipulator joints 

than the classical Cartesian control method. The presented approach can be applied in 

servicing and active debris removal missions. 
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